Design guidelines for lattice type soil improvement with deep mixing for liquefaction mitigation

#### Alain PECKER





Ecole des Ponts ParisTech



**Coulomb Lecture – June 25, 2024** 

# LATTICE TYPE SOIL IMPROVEMENT WITH DEEP MIXING



#### **OUTLINE OF THE PRESENTATION**

- Motivation for the study and some examples
- Fundamentals of seismic behavior of lattice type deep soil mixing
- Rapid overview of some previous studies and limitations
- The research program : experiments and numerical analyses
- Liquefaction assessment
  - seismic capacity
  - seismic demand
- Design procedure
- Conclusions

### VOLUME OF TREATED SOIL BY SOIL MIXING



Tokunaga et al. (2015)

### STATISTICS OF DEEP MIXING WORKS IN JAPAN



Kitazume – Terashi (2013)

#### **POST-EARTHQUAKE OBSERVATIONS**

- During the Yoko-ken-Nanbu earthquake
  - ➤14-story Oriental Hotel, founded on piles protected by a deep soil mixing grid (DSM) survived the earthquake





# PREFECTURE FORT de FRANCE

#### Soletanche-Bachy





- Reclaimed hydraulic fill (9-17m)
- Sloping rock surface towards the sea
- Highly seismic area : M=7.5, pga=0.36g



# PREFECTURE FORT de FRANCE







#### ANSE DU PORTIER - MONACO Bouygues



#### ANSE DU PORTIER – MONACO Construction site



Perini-Borsellino-Jourdren : Webinar CFMS(2020)

#### SOIL IMPROVEMENT TECHNIQUES



#### PUERTO BOLIVAR HARBOUR Soletanche-Bachy



T. Jeanmaire : CFMS (11/06/2024)

# SOIL IMPROVEMENT FOR LIQUEFACTION MITIGATION AND SLOPE STABILSATION

#### **Characteristics:**

1500 CSM Pannels (45 500 m3) 2.8m x 0.8m - average height : 10m  $R_c$  = 2.6 MPa @90 days



T. Jeanmaire : CFMS (11/06/2024)

### SOIL IMPROVEMENT TECHNIQUES



#### T. Jeanmaire : CFMS (11/06/2024)

# FOCUS ON LATTICE TYPE DSM TECHNIQUES

#### Geomix technique



Trenchmix® by Soletanche Bachy

#### Trenchmix technique





#### **OUTLINE OF THE PRESENTATION**

- Motivation for the study
- Fundamentals of seismic behavior of lattice type deep soil mixing (DSM)
- Rapid overview of some previous studies and limitations
- The research program : experiments and numerical analyses
- Liquefaction assessment
  - seismic capacity
    - seismic demand
- Design procedure
- Conclusions

### SEISMIC BEHAVIOUR OF DSM GRIDS

- Increases the lateral confinement of improved soils
- Limits the shear strains in the confined soil
- Provides resistance against lateral and vertical deformation
- Prevents pore water pressure migration from adjacent liquefied zones



#### **REDUCTION OF FREEFIELD SHEAR STRAIN**



# CYCLIC SHEAR STRAIN vs VOLUMETRIC STRAIN/PORE PRESSURE

2.0 Vertical strain (%)  $\sigma = 2000 \text{ per sa ft}$ D,=45 percent After Dobry-Abdoun (2015) 1.5 50 Cycle 50 Test Location B Series 1 Cycles • 10 σ'<sub>v0</sub> ~ 1120 psf = 7.8 psi 20 Cycles 1.0 ▲ 50 Cycles Pore Pressure Ratio, ru(%) 40 100 Cycles Cycle 10 Dr=60 percent 0.5 30 D,=80 percent 20 0  $N=100 \quad \gamma_{tv} = 0.01\%$ 0.01 0.1 1.0  $N = 10 \quad \gamma_{tv} = 0.02\%$ 10 Cyclic shear strain (%) 10-4  $10^{-3}$ 10-1 10 Cyclic Shear Strain,  $\gamma_{c}(\%)$ 

After Silver-Seed (1971)

# BEHAVIOUR OF LATTICE TYPE DEEP SOIL MIXING



Increases the stiffness of the soil layer
⇒Decreases the cyclic shear strain
⇒ Decreases pore pressure build up



### **OUTLINE OF THE PRESENTATION**

- Motivation for the study
- Fundamentals of seismic behavior of lattice type deep soil mixing (DSM)
- Rapid overview of some previous studies and limitations
- The research program : experiments and numerical analyses
- Liquefaction assessment
  - seismic capacity
    - seismic demand
- Design procedure
- Conclusions

### **COMMON ASSUMPTIONS**

- Soils improved with DSM grids experience pure shear deformation
- Shear strains in the confined soil and in the soil mixing trenches are equal : strain compatibility assumption

#### However

• Bending flexure of the trenches plays a major role in the response (O'Rourke et Goh, 1997)



### DSM GRIDS : SATE OF THE ART

- Based on soil elastic behaviour and stress-based approach
   ➢ Nguyen et al (2013), Gueguin et al (2013)
- Findings



#### No strain compatibility



#### Stiffening effect $\Rightarrow$ decrease in volumetric shear strain



#### **NGUYEN's PROPOSALS**



# $C_{\rm G}$ , $\gamma_{\rm r}$ calibrated on FEM analyses



No strain compatibility (Nguyen et al)

Strain compatibility (Baez-Martin)

### **GUEGUIN PROPOSALS**

$$R = \frac{\left< \gamma_{\rm s} \right>}{\gamma_{\rm s}} = \lambda \sqrt{\frac{G_{\rm s}}{G_{\rm L}}}$$

 $\lambda$  Localization factor for shear strain



#### COMPARISON



Replacement ratio A<sub>r</sub>

### **EXISTING GUIDELINES**

North America : FHWA (Federal Highway Administration )

- 1. Based on database of excess pwp, normalized by freefield excess pwp for various configurations
- 2. Calculate the freefield excess pwp
- 3. Multiply 2 by 1

#### Japan : Kitazume-Terashi



d

5

### **OUTLINE OF THE PRESENTATION**

- Motivation for the study
- Fundamentals of seismic behavior of lattice type deep soil mixing (DSM)
- Rapid overview of some previous studies and limitations
- The research program : experiments and numerical analyses
- Liquefaction assessment

seismic capacity

seismic demand

- Design procedure
- Conclusions

#### **RESEARCH PROGRAM**

- Objectives : establish guidelines for the preliminary design of soil improvement with DSM grids
- Funding : Fédération Nationale des Travaux Publics (FNTP) Soletanche-Bachy
- Means : Combination of: Model tests in centrifuge facility (Institut Gustave Eiffel) Nonlinear dynamic numerical analyses

#### Shaker









#### Gustave Eiffel (ex- IFFSTAR) Centrifuge facility





### **TESTED CONFIGURATIONS**

- Soil column (freefield) and improved soil (DSM grid)
- DSM grid made of plastic resin (*G* = 1 to 2 MPa)
- Soil : Fontainebleau sand at  $D_{\rm R}$  = 57%
- 32g and 48g : allows to test 2 grid spacings (4m x 4m and 6m x 6m) with the same "structural" model
- 10 cycles of sinusoidal loading (pga = 0.05g, 0.01g, 0.015g, ...to 0.30g)
- 2 real accelerograms: Landers and Northridge scaled to pga= 0.05g and 0.2g

### **CONCLUSIONS FROM CENTRIFUGE TESTS**

- Several experimental difficulties prevent a thorough interpretation of the tests and a definitive validation of the improvement technique:
  - The ESB container creates boundary effect on the outside unimproved soil, which in turn induce motions of the DSM grid
  - Unperfect fixity of the DSM grid at the bottom creates rotational motions of the DSM cells, which would not happen in reality due to the lower aspect ratio of real DSM grids
  - Smooth contact between the DSM and the soil is different from the actual rough contact
  - ≻.....
- Nevertheless, some tests could be used to calibrate the numerical models

### **OUTLINE OF THE PRESENTATION**

- Motivation for the study
- Fundamentals of seismic behavior of lattice type deep soil mixing (DSM)
- Rapid overview of some previous studies and limitations
- The research program : experiments and numerical analyses
- Liquefaction assessment
  - seismic capacity
  - seismic demand
- Design procedure
- Conclusions

#### **EVALUATION OF SOIL LIQUEFACTION**

Stress based approach (NCEER, Idriss-Boulanger)



Definition of seismic demand CSR
 Evaluation of seismic capacity CRR
 Calculation of safety factor CRR/CSR

Strain based approach ← Followed in this presentation
 Definition of seismic demand : induced cyclic shear strain <γ<sub>s</sub>>
 Evaluation of cyclic shear strain triggering liquefaction γ<sub>cl</sub>

# LIQUEFACTION ASSESSMENT Back to the fundamentals

Liquefaction is a strain governed phenomenon



"Results of undrained cyclic strain-controlled tests in the laboratory ...show practical advantages of using  $\gamma$  instead of CSR to characterize the pore pressure response of sands to cyclic shear loading" *Dobry-Abdoun, 2015* 

#### LIQUEFACTION TRIGGERING STRAIN $\gamma_{cl}$ after Dobry-Abdoun (2015)



 $CSR = \tau / \sigma'_{v0} = G\gamma_{c} / \sigma'_{v0}$  $= \gamma_{c} G_{max} (G/G_{max})_{/\gamma_{c}} / \sigma'_{v0}$  $= \gamma_{c} \rho V_{S1}^{2} (G/G_{max})_{/\gamma_{c}} / \sqrt{p_{a}} \sigma'_{v0}$ CRR $= \gamma_{cl} \rho V_{S1}^{2} (G/G_{max})_{/\gamma_{cl}} / \sqrt{p_{a}} \sigma'_{v0}$ 

 $G/G_{\text{max}} = 1/(1 + \gamma/\gamma_{\text{r}})^{\alpha}$ e.g. Darendeli(2001)

Iterative solution  $\rightarrow \gamma_{cl}$ 

### SEISMIC CAPACITY for $M_w = 7.5$ after Dobry-Abdoun (2015)



 $K_0 = 0.5 - 1.0, \sigma'_{v0} = 50 - 100 \text{kPa}, V_s = 100 - 180 \text{m/s}$ 

# DEFINITION OF LIQUEFACTION TRIGGERING STRAIN



For loose recent sand deposits this strain is constant  $\gamma_{cl} = 3.0 \ 10^{-4}$  for  $M_w = 7.5$ (Dobry-Abdoun, 2015)

Dobry's procedure extended to other  $M_{\rm w}$ 

$$\gamma_{\rm cl} = \frac{0.113M_{\rm w}^2 - 1.596M_{\rm w} + 5.711}{M_{\rm w} - 5.343}$$

$$\gamma_{cl}$$
 replaces CRR

#### SEISMIC DEMAND

- Dynamic analyses of one cell (periodic scheme)
   >3D elastoplastic soil behaviour (Prevost's model)
- Validation of the numerical model vs tests (centrifuge experiments)
- Extensive nonlinear FE analyses with 30 recorded time histories with  $6.0 \le M_w \le 7.0$
- Development of a relationship between average induced strain in the cell, freefield strain, DSM characteristics....

$$<\gamma_{\rm S}>=\Phi(\gamma_{\rm S},G,G_{\rm T},B,e,\eta,pga...)$$

## **SOIL CHARACTERISTICS :** Prevost's model

|                                       |                                            | VAL              | Tura                |                         |  |
|---------------------------------------|--------------------------------------------|------------------|---------------------|-------------------------|--|
| PARAMETER                             | SYMBOL                                     | BACKFILL         | Sand                | IYPE                    |  |
| Mass density (t/m <sup>3</sup> )      | $\rho_{\text{S}}$                          | 1.9              | 2.0                 | State<br>parameter      |  |
| Shear modulus (MPa)                   | $G_1$                                      | 75, 90, 110      | 75, 90, 110         |                         |  |
| Bulk modulus (MPa)                    | B <sub>1</sub>                             | 140, 165,<br>200 | 1500, 2200,<br>2700 | Elastic                 |  |
| Reference stress (MPa)                | p <sub>a</sub>                             | 0.10             | 0.10                | parameters              |  |
| Exponent                              | n                                          | 0.5              | 0.5                 |                         |  |
| Friction angle (°)                    | φ                                          | 35               | 35                  | Plastic                 |  |
| Cohesion (kPa)                        | C <sub>u</sub>                             | 5                | 5                   | parameters              |  |
| Definition of stress-<br>strain curve | lpha, x <sub>l</sub><br>and x <sub>u</sub> | see Figure 5-3   |                     | Nonlinear<br>parameters |  |
| Characteristic angle (°)              | Ψ                                          | 33               | 33                  | Dilation                |  |
| Dilation parameter                    | X <sub>PP</sub>                            | 0.05             | 0.10                | parameters              |  |

Note:  $G_{\rm S} = G_{\rm I} \left( \sigma_{\rm m}' / p_{\rm a} \right)^{n} \quad B_{\rm S} = B_{\rm I} \left( \sigma_{\rm m}' / p_{\rm a} \right)^{n}$ 

#### NUMERICAL ANALYSES vs EXPERIMENTS







#### FINITE ELEMENT MODEL



Top view



#### 3D perspective

#### VARIABLES INVOLVED in MODEL

| SUBSYSTEM     | PHYSICAL QUANTITIES                               | SYMBOL                              |
|---------------|---------------------------------------------------|-------------------------------------|
|               | Soil shear modulus                                | $G_1$                               |
|               | Mass density                                      | $ ho_{S}$                           |
| Soil          | Height of soil column                             | H <sub>s</sub>                      |
|               | Maximum freefield cyclic shear strain             | $\gamma_{S}$                        |
|               | Shear modulus                                     | G <sub>T</sub>                      |
|               | Mass density                                      | $\rho_{\rm T}{}^{\sim}\rho_{\rm S}$ |
|               | Height of treatment                               | $H_{\mathrm{T}}$                    |
| Trenches      | Horizontal spacing                                | В                                   |
|               | Trench thickness                                  | е                                   |
|               | Maximum average cyclic shear strain within a cell | < <sub>75</sub> >                   |
| Ground motion | Freefield peak ground surface acceleration        | pga                                 |
|               | Magnitude                                         | $M_{ m w}$                          |



### RANGE OF INVESTIGATED PARAMETERS

| Subsystem     | Physical quantity                                         | Symbol                        | Range of values                                           |
|---------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------------|
|               | Shear modulus (MPa)                                       | $G_1$                         | 75, 90, 110                                               |
|               | Mass density (t/m <sup>3</sup> )                          | $ ho_{S}$                     | 2.0                                                       |
| Soil          | Height of soil column (m)                                 | H <sub>s</sub>                | 30                                                        |
|               | Maximum freefield cyclic shear strain                     | $\gamma_{\sf S}$              | calculated                                                |
|               | Shear modulus (MPa)                                       | $G_{T}$                       | 1125, 1700, 2000                                          |
|               | Mass density (t/m <sup>3</sup> )                          | $ ho_{\rm T}$ ~ $ ho_{\rm S}$ | 2.0                                                       |
|               | Height of treatment (m)                                   | $H_{\mathrm{T}}$              | 10, 15, 20                                                |
| DSM trenches  | Horizontal spacing (m)                                    | В                             | 4, 6, 8                                                   |
|               | Trench thickness (m)                                      | е                             | 0.4, 0.6, 0.8, 1.0                                        |
|               | Maximum average cyclic shear strain within a cell         | $< \gamma_{\rm S} >$          | calculated                                                |
| Ground motion | Freefield ground surface acceleration (m/s <sup>2</sup> ) | Pga                           | Calculated from outcrop acceleration at depth $\rm H_{S}$ |
|               | Magnitude                                                 | $M_{ m W}$                    | 6.0, 6.5, 7.0                                             |

# DIMENSIONNAL ANALYSIS Vaschy-Buckingham theorem

| Dimensionless<br>parameter | Expression                                             | Physical meaning                                    |
|----------------------------|--------------------------------------------------------|-----------------------------------------------------|
| $\Pi_1$                    | $G_{\rm T}/G_{\rm 1}$                                  | Relative stiffness of soil mixing to freefield soil |
| П2                         | $\eta = \left(2Be + e^2\right) / \left(B + e\right)^2$ | Replacement ratio (in decimal)                      |
| $\Pi_3$                    | $(B+e)/H_{\rm T}$                                      | Aspect ratio                                        |
| $\Pi_4$                    | $M_{ m w}$                                             | Earthquake magnitude                                |
| $\Pi_{5}$                  | $V_{\rm S}^2/(H_{\rm S}.pga)$                          | Fundamental frequency of soil column                |
| $\Pi_{6}$                  | $H_{\mathrm{T}}/H_{\mathrm{S}}$                        | Relative height of soil treatment to soil depth     |
| Π <sub>7</sub>             | $\gamma_{ m S}$                                        | Freefield cyclic shear strain                       |
| $\Pi_8$                    | $<\gamma_{\rm S}>$                                     | Average cyclic shear strain within a cell           |

# VERTICAL PROFILES OF MAXIMUM CYCLIC SHEAR STRAIN





# PLANE VIEW OF MAX SHEAR STRAIN (half a cell at depth Z)

| 1.00E-04 | 8.76E-05 | 8.85E-05 | 8.85E-05 | 8.93E-05 | 9.02E-05 | 9.09E-05 | 9.25E-05 | 9.26E-05 | 1.07E-04 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 1.04E-04 | 9.08E-05 | 9.01E-05 | 8.98E-05 | 9.16E-05 | 9.28E-05 | 9.52E-05 | 9.77E-05 | 1.02E-04 | 1.20E-04 |
| 9.80E-05 | 9.19E-05 | 9.16E-05 | 9.07E-05 | 9.42E-05 | 9.43E-05 | 9.89E-05 | 1.01E-04 | 1.08E-04 | 1.22E-04 |
| 9.40E-05 | 9.21E-05 | 9.27E-05 | 9.11E-05 | 9.64E-05 | 9.51E-05 | 1.02E-04 | 1.03E-04 | 1.11E-04 | 1.24E-04 |
| 9.10E-05 | 9.23E-05 | 9.29E-05 | 9.14E-05 | 9.75E-05 | 9.53E-05 | 1.03E-04 | 1.04E-04 | 1.13E-04 | 1.25E-04 |

### **DESIGN EQUATION**

Extensive 3D numerical analyses
 + Dimensional analyses

Average shear strain within a cell function of freefield shear strain

$$<\gamma_{\rm S}>=\lambda \left(\frac{G_{\rm T}}{G_{\rm 1}}\right)^{\theta_{\rm 1}} \left(1-\eta\right)^{\theta_{\rm 2}} \tanh^{\theta_{\rm 3}}\left(\frac{B+e}{H_{\rm T}}\right) M_{\rm w}^{\theta_{\rm 4}}\left(\frac{G_{\rm S}}{\rho_{\rm S}H_{\rm S}pga}\right)^{\theta_{\rm 5}} \left(1-\frac{H_{\rm T}}{H_{\rm S}}\right)^{\theta_{\rm 6}} \gamma_{\rm S}^{\theta_{\rm 7}}$$

 $\theta_1$  to  $\theta_7$  numerical parameters determined from analyses, depth dependent

### **CALCULATIONS vs PREDICTIONS**



### **DESIGN FLOWCHART**



#### PORE PRESSURE MODEL

Cetin K. O., and Bilge H. T. (2012)

Dobry's model

$$\ln(r_{\rm u,N}) = \ln\left\{\frac{pfNF(\gamma_{\rm max,N} - \gamma_{\rm tv})^{s}}{1 + fNF(\gamma_{\rm max,N} - \gamma_{\rm tv})^{s}}\right\}$$

 $\gamma_{tv}$  (%)

0.01

(FC+1)<sup>0.1252</sup>

 $r_{u,N}$ excess pore-water pressure ratio in Nth loading cycle $\gamma_{max,N}$ maximum shear strain amplitude in Nth loading cycle (%) =  $\langle \gamma_{\rm S} \rangle$ Nnumber of equivalent cycles at strain amplitude  $\gamma_{max,N}$  $\gamma_{\rm tv}$  volumetric threshold shear strain below which  $\Delta u = 0.0$ fmodel parameter = 1.0 for one dimensional loading and 2.0 forbidirectional loadingpp, F, s are model parameters

#### CONCLUSIONS

- Promising perspectives are offered by the technique of soil reinforcement with DSM trenches : cost, efficiency
- Based on extensive numerical 3D nonlinear dynamic analyses, validated by comparison with centrifuge experiments, a design procedure is established
  - Liquefaction triggering is assessed from a strain-based approach
  - The safety margin is evaluated with respect to the seismically induced pore water pressure and not from a conventional safety factor

#### CONCLUSIONS

- Real configurations may differ from those analyzed in these recommendations (layered profiles with significant stiffness variations, sloping ground surface...)
  - Design equation for the seismic demand may need more detailed studies (e.g. FE analyses)
- A last comment : the consequences development of high pore water pressure locally within a cell are less dramatic than for unimproved soil ; the gravel mattress allows for the redistribution of the loads on the DSM grid and the DSM walls prevent pore water pressure migration.

#### MAIN REFERENCES

- Pecker A., Gotteland P., Volcke J.P., Michel D, Jeanmaire T., Mathieu F. Jeanty J.M. (2020). Recommendations for the design of lattice type soil improvement with deep mixing for lique-faction mitigation. Report Fédération Nationale des Travaux Publics (FNTP), Paris.
- Kitazume M., Terashi M. (2012). The Deep Mixing Method. Taylor & Francis.
- Gueguin M., De Buhan P., Hassen G. (2013). A Homogenization Approach for Evaluating the Longitudinal Shear Stiffness of Reinforced Soils: column versus trench configuration. Int. J. for Numerical and Analytical Methods in Geomechanics, 37(18):3150–3172.
- Nguyen T.V., Rayamajhi D., Boulanger R.W., Ashford S.A., Lu J., Elgamal A., Shao L. (2013). Design of DSM Grids for Liquefaction Remediation. J. of Geotechnical and Geoenvironmental Engineering, 139(11): 1923–1933.
- Dobry R., Abdoun T. (2015). Cyclic Shear Strain Needed for Liquefaction Triggering and As-sessment of Overburden Pressure Factor Kσ. J. of Geotechnical and Geoenvironmental Engineering, 141(11): 04015047.

#### ACKNOWLEGMENTS

- Soletanche-Bachy: Pierre Schmitt, Thierry Jeanmaire, Fabrice Mathieu, Jean Michel Jeanty
- FNTP: Philippe Gotteland, Jean Paul Volcke
- Institut Gustave Eiffel: Sandra Escoffier
- Former students from ENPC: Marianne Bossu (Mme Aguié), Lucas Rocha-Botelho

# THANK YOU FOR YOUR ATTENTION