

Journée scientifique sur la modélisation physique en géotechnique Essai préliminaire de l'application de l'impression 3D à la modélisation physique des massifs rocheux **LE 06 OCTOBRE 2022**

Essai préliminaire de l'application de l'impression 3D à la modélisation physique des massifs rocheux

JOURNÉE SCIENTIFIQUE SUR LA MODÉLISATION PHYSIQUE EN GÉOTECHNIQUE

LE 06 OCTOBRE 2022

Jana JABER – ANDRA **Olivier DECK – GeoRessources** Marianne CONIN – GeoRessources

Contexte Général

Ancienne mine souterraine de gypse

Massif rocheux

Roche intacte

Massif rocheux discontinu

Excavation d'un tunnel

Discontinuités rocheuses

Classification des massifs rocheux (d'après l'AFTES) selon le type d'approche de modélisation adaptée

Cfms 4

Classification des massifs rocheux (d'après l'AFTES) selon le type d'approche de modélisation adaptée

Classification des massifs rocheux (d'après l'AFTES) selon le type d'approche de modélisation adaptée

Classification des massifs rocheux (d'après l'AFTES) selon le type d'approche de modélisation adaptée

Cfms ⁷

Classification des massifs rocheux (d'après l'AFTES) selon le type d'approche de modélisation adaptée

Comportement mécanique des joints rocheux sous cisaillement

Morphologie

Ponts rocheux

Levy, 2006

La modélisation physique

Reproduire, à *l'échelle réduite* et à partir d'un *matériau analogue*, un ouvrage réel afin d'étudier son comportement

application des lois de similitude.

Modélisation physique sous gravité terrestre

(g*=1)

Lin et al., 2015

Dispositif DIMITRI

(g*=1)

GéoRessources

Modélisation physique en mécanique des roches sous 1g

Etat de l'art

Approche continue : Méthodes d'homogénéisation

Lin et al., 2015

UNIVERSITÉ DE LORRAINE

Huang et al., 2013

Inconvénients

Non prise en compte explicitement des discontinuités

Négligence des phénomènes liés aux interactions entre les fractures

Utilisation de la fabrication additive

Application de l'impression 3D en mécanique des roches

UNIVERSITÉ DE LORRAINE

Ressources

Etat de l'art

Etude de la porosité et perméabilité

Gomez et al., 2019

Distribution interne des contraintes

Ju et al., 2014

Application de l'impression 3D en mécanique des roches

Etat de l'art

Comportement mécanique pour les différents des plastiques géomatériaux

d'intérêt Peu accordé au comportement des joints

Jiang et Zhao, 2015

Jiang et al., 2016

Ishibashi et al., 2020

Etudes limitées à l'échelle du laboratoire

Song et al., 2018

Comment construire par 3DP un modèle réduit en milieu rocheux explicitement discontinu, dont le comportement est piloté par les discontinuités?

Propriétés du PA12

Joints rocheux à propriétés contrôlées

Application à la modélisation physique

Echelle réelle

Echelle réduite ¹/₂

Impression 3D : le frittage laser SLS du Polyamide 12 (PA12)

Tracé 2D

Jaber et al., 2020

Essai de compression/traction

Limite d'élasticité = 42 MPa

Essai de compression/traction

Limite d'élasticité = 42 MPa

Comment construire par 3DP un modèle réduit en milieu rocheux explicitement discontinu, dont le comportement est piloté par les discontinuités?

Propriétés du PA12

Joints rocheux à propriétés contrôlées

Application à la modélisation physique

Echelle réelle

Echelle réduite ¹/₋

Description des joints réguliers

- Les joints sont définis par :
- 1- Une ouverture fixe de 0,4 mm;
- 2- Un nombre fixe de ponts rocheux (section
- unitaire unique nombre varie entre 9 et 126);
- 3- Une géométrie régulière.

Essais de cisaillement : comportement mécanique global

Comportement mécanique globalement similaire à celui des joints rocheux

Critère de rupture

$$\tau_{pic} = \sigma_n \tan(23,5+\theta) + 0,0135N_{rb}$$

$$\tau_{res} = \sigma_n \tan(21,8+\theta)$$

avec $R^2 = 0,982$ *avec* $R^2 = 0,938$

Critère de rupture

Geo//// Ressources

$$avec R^2 = 0,982$$

 $avec R^2 = 0,938$

Comment construire par 3DP un modèle réduit en milieu rocheux explicitement discontinu, dont le comportement est piloté par les discontinuités?

Propriétés du PA12

Joints rocheux à propriétés contrôlées

Application à la modélisation physique

Echelle réelle

Le PA12 fabriqué par SLS est-il applicable à la modélisation physique des roches?

$$\rho^* = \frac{\rho_m}{\rho_p} \qquad L^* =$$

$$\sigma^* = \rho^* g^* L^* et E^* = \sigma^* = c^*$$

$$\downarrow$$

$$E_p = \frac{E_m}{E^*} \qquad c_{jp} = \frac{c_{jm}}{c_j^*}$$

A_p est comparé aux valeurs des propriétés des roches réelles

Roches	C _{roche} [MPa]	$arphi_{ m roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{j}[\circ]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

a) Etude d'un affaissement lié à une excavation située à 12,5 m de profondeur : $L^* = 1/25 - g^* = 1 - 0,3 \le \rho^* \le 0,5$

	Facteurs d'échelle	Echelle réduite A _m	Résultats à
E [GPa]	0,012≤ <i>E</i> ∗≤0,02	1,60	
c _j [MPa]	0,012≤ <i>c</i> ∗≤0,02	0,0-1,97	С
φ _j [°]	φ* =1	21,2-36,2	2
k_s [MPa/mm]	$0,3 \le k_s * \le 0,5$	0,7-5,6	1

Roches	C _{roche} [MPa]	$arphi_{ m roche}$ [°]	E [GPa]	C _j [MPa]	$\varphi_{j}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

a) Etude d'un affaissement lié à une excavation située à 12,5 m de profondeur : $L^* = 1/25 - g^* = 1 - 0,3 \le \rho^* \le 0,5$

	Facteurs d'échelle	Echelle réduite	Résultats
		Am	
E [GPa]	0,012≤ <i>E</i> ∗≤0,02	1,60	
c _j [MPa]	0,012≤ <i>c</i> ∗≤0,02	0,0-1,97	C
φ _j [°]	φ* =1	21,2-36,2	2
k_s [MPa/mm]	$0,3 \le k_s * \le 0,5$	0,7-5,6	1

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{\mathrm{j}}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

a) Etude d'un affaissement lié à une excavation située à 12,5 m de profondeur : $L^* = 1/25 - g^* = 1 - 0,3 \le \rho^* \le 0,5$

	Facteurs d'échelle	Echelle réduite	Résultats à
		Am	
E [GPa]	0,012≤ <i>E</i> ∗≤0,02	1,60	
c _j [MPa]	0,012≤ <i>c</i> ∗≤0,02	0,0-1,97	С
φ _j [°]	φ* =1	21,2-36,2	2
k_s [MPa/mm]	$0,3 \le k_s * \le 0,5$	0,7-5,6	1

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{\mathrm{j}}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

Etude d'un affaissement lié à une excavation située à 12,5 m de profondeur : a) $L^*=1/25 - q^*=1 - 0,3 \le \rho^* \le 0,5$

	Facteurs d'échelle	Echelle réduite	Résultats à
		Am	
E [GPa]	0,012≤ <i>E</i> ∗≤0,02	1,60	
c _j [MPa]	0,012≤ <i>c</i> ∗≤0,02	0,0-1,97	С
φ _j [°]	φ* =1	21,2-36,2	2
k_s [MPa/mm]	$0,3 \le k_s * \le 0,5$	0,7-5,6	1

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{j}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

b) Etude de la stabilité d'une excavation située à 100 m de profondeur : $L^*=1/25 - g^*=1 - \rho^*$ à négliger

	Facteurs d'échelle	Echelle réduite $\mathbf{A}_{\mathbf{m}}$	Résultats
E [GPa]	<i>E</i> *=1/25	1,60	
c _j [MPa]	<i>c</i> *=1/25	0,0-1,97	
φ _j [°]	φ*=1	21,2-36,2	
k_s [MPa/mm]	$k_s *=1$	0,7-5,6	

à l'échelle du prototype A_n $E_{0} = 40$ 0≤ c_i ≤49,25 $21,2 \le \varphi_i \le 36,2$ $0,7 \le k_s \le 5,6$

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{j}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

b) Etude de la stabilité d'une excavation située à 100 m de profondeur : $L^*=1/25 - g^*=1 - \rho^*$ à négliger

	Facteurs d'échelle	Echelle réduite Am	Résultats
E [GPa]	<i>E</i> *=1/25	1,60	
c _j [MPa]	<i>c</i> *=1/25	0,0-1,97	
φ _j [°]	φ*=1	21,2-36,2	
k_s [MPa/mm]	$k_s *=1$	0,7-5,6	

à l'échelle du prototype A_n $E_{0} = 40$ 0≤ c_i ≤49,25 $21,2 \le \varphi_i \le 36,2$ $0,7 \le k_s \le 5,6$

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$arphi_{j}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 -37	3,8-46	0,7-17

b) Etude de la stabilité d'une excavation située à 100 m de profondeur : $L^*=1/25 - g^*=1 - \rho^*$ à négliger

	Facteurs d'échelle	Echelle réduite Am	Résultats
E [GPa]	<i>E</i> *=1/25	1,60	
c _j [MPa]	<i>c</i> *=1/25	0,0-1,97	
φ _j [°]	φ*=1	21,2-36,2	
k_s [MPa/mm]	$k_s *=1$	0,7-5,6	

à l'échelle du prototype A_p $E_p = 40$ $0 \le c_j \le 49,25$ $21,2 \le \varphi_j \le 36,2$ $0,7 \le k_s \le 5,6$

Roches	C _{roche} [MPa]	$arphi_{roche}$ [°]	E [GPa]	C _j [MPa]	$\varphi_{j}[^{\circ}]$	K _n [MPa/mm]	K _s [MPa/mm]
Intervalle générale (min-max)	0-70,6	7,5-51	0,050-110	0-2,69	7-55,8	3,8-46	0,02-29,8
Basalte	8-36	43-50	20-73,4	0,24 – 0,35	31-42		
Grès	8-27,2	27,8-45,2	5-60		25-34	35,1-1,29	1,29
Argilite	0-0,18	12-18,5					
Calcaire	6,72-24	42-50	2-80	0	25 - 37	3,8-46	0,7-17

b) Etude de la stabilité d'une excavation située à 100 m de profondeur : $L^*=1/25 - g^*=1 - \rho^*$ à négliger

	Facteurs d'échelle	Echelle réduite Am	Résultats
E [GPa]	<i>E</i> *=1/25	1,60	
c _j [MPa]	<i>c</i> *=1/25	0,0-1,97	
φ _j [°]	φ*=1	21,2-36,2	
k_s [MPa/mm]	$k_s *=1$	0,7-5,6	

Validation de la faisabilité d'un modèle physique d'un massif rocheux en utilisant la fabrication additive (SLS du PA12).

- Reproduction du comportement global dans le cas où la rupture a lieu au niveau des joints rocheux
- Nouveau critère de rupture en fonction de l'angle des aspérités et du nombre de ponts rocheux
- Limites de cette technologie : \bullet
 - Application à des massifs dont le rapport entre la dimension de l'ouvrage et celle des blocs est compris

entre 1 et 100, avec
$$\frac{\sigma_{roche intacte}}{\sigma_{massif}} \ge 10$$

L* = 1/25 pour $0.3 \le \rho^* \le 0.5$

 $L^* = 4/275 = 0,0145$ si le ρ^* n'et pas pris en compte

Conclusions

Définition des joints rocheux artificiels à propriétés contrôlées

Application des lois de similitude

Suites et Perspectives Thèse de E. Abi Aad – soutenance prévue juin 2023

a) Changement de matériaux – impression 3D SABLE (avec Platinium 3D)

Imprimante Voxeljet VX 1000

b) Intégration de rugosités plus réalistes (caractère fractal)

Facies de rupture Classique des Géomatériaux

Rc plus satisfaisante (% liant)

Suites et Perspectives Thèse de E. Abi Aad – soutenance prévue juin 2023

c) Intégration de capteurs dans la matrice (fibre optique) – avec SolExperts

d) Développement d'un programme permettant de générer les modèles géométriques 3D (Mathematica)

Différentes familles de discontinuités, rugosité emboitée, ouverture du joint contrôlée + ponts rocheux (E. Abi Aad)

Merci pour votre attention

