

Webinaire « Doctorants en géotechnique »

sismique de l'interface sol-clou

Université Gustave Eiffe

LABORATOIRE RRO **RISQUE ROCHEUX ET OUVRAGES GEOTECHNIQUES**

Clouage des sols : comportement sous sollicitation

GHIDA HAWWA 9 JANVIER 2024

Who are We?

RRO Test deals with applied research issues identified in particular during expertise on real projects or works.

Scope of Action:

Observation and monitoring of sites and geotechnical structures in full scale.

Behavior, dimensioning, and design of geotechnical structures.

Methods of Research:

- Experimental testing (scale 1:1 or on site as possible).
- Analytical (calculations).
- Numerical approaches (CESAR-LCPC,OPTUM CE...).

On-going Research:

- Ground-frame friction for the foundations of the bolt and nail type.
- Seismic behavior of ground reinforcements by nailing.
- Behavior, design and dimensioning of the structures for protection against rockfall,
- Vulnerability of civil engineering structures required by a hard impact at moderate speed.
- Behavior and diagnosis of masonry works.
 - High-precision instrumentation for monitoring works and sites by optical fiber.

LABORATOIRE RRO RISQUE ROCHEUX ET OUVRAGES GÉOTECHNIQUES

Rocks fall station in Montagnole

Dynamic nail pull-out device

Soil Nailed Walls:

• Soil retaining structures where soil is reinforced by sealed grouted steel bars.

Economically:

- Reduced cost
- Rapid construction
- Easy implementation

Performance:

• Remarkable seismic performance.

Test Setup	st Setup Results		ults Challen	
)	Université Gustave Eiffel	LABORATOIRE RISQUE ROCHE OUVRAGES GÉ

soil nail walls construction

Stability of Soil Nailed Walls:

Stability of soil-nailed walls

Stability of Soil Nailed Walls: Iocal behavior

Seismic Behavior: limits of design methods

Test Setup	Results		Challenges & Persp		
			Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

Non homogenous distribution of acceleration

Over estimation of inertial forces

Over design of the full structure, with high rigidity

Under estimation of resistance

Seismic Behavior: limits of design methods

Test Setup	Results	Challen	Challenges & Persp		
		Université Gustave Eiffel	LABORATOIRE RISQUE ROCHE OUVRAGES GÉ		

Non homogenous distribution of acceleration

Over estimation of inertial forces

Under estimation of resistance

Over design of the full structure, with high rigidity

The Interface Behavior: static problem

Test Setup	Results		Challenges & Persp		
) Č	Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

At equilibrium:

$$T(x) - T(x + \Delta x) - \pi \tau_x D = 0$$
And according to Hook's law:

$$\sigma = E\varepsilon$$

$$\frac{d T_x}{S} = E \frac{d_u}{d_x}$$
The equations add up to form a 2nd order deferential equation:

$$ES \frac{d^2 U}{dx^2} - \pi \tau_x D = 0$$
$$\frac{d^2 U}{dx^2} = \frac{\pi \tau_x D}{ES}$$

The Interface Behavior: dynamic problem

In dynamic problem:

At equilibrium acceleration shall be considered:

$$ES\frac{d^{2}_{U(x,t)}}{{d_{x}}^{2}} - \pi\tau_{x}D = \rho S\frac{d^{2}_{U(x,t)}}{{d_{t}}^{2}}$$

Where :

S: surface area of the nail section

E: young modulus of the steel

D:diameter of cross section

Test Setup	est Setup Results		Challenges & Persp		
m			Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

$$ES\frac{d^{2}u(x,t)}{d_{x}^{2}} - \pi\tau_{x}D = \rho S\frac{d^{2}u(x,t)}{d_{t}^{2}}$$

The main problem is that interface friction in case of dynamic loading is unknown

Identifying parameters influencing τ_x :

- Frequency
- Amplitude
- Confining pressure
- Soil properties

Aim of the Study:

Understanding local interface behavior

Identifying the parameters on which friction at interface depends

Test Setup	Results	Challenges & Pe		
		Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

The Dynamic pull-out device:

Operating Mode:

- Impose static tension load in two different configurations: incremental loading pullout tests (steps configuration) or during a linear increase of the tensile force (slope configuration).
- Superimposition of vibrational pulses centered around the static load with an amplitude at percentage of the static load (1-50% of the static tension).

The dynamic pull-out device

Experimental Setup: connections and monitor

Connection of optical fiber along the steel bar:

Double optical fiber connected along the two flat sides of the steel bar

Displacement and load sensors connected at the head of the nail

Test Setup	Results		Challenges & Persp		
oring)	Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

Employed setup connections

Test Protocol:

	Static load		Dynamic load (pulse)			
Test Name	Pressure(bar)	Duration (sec/step)	Amplitude(%)	Frequency(Hz)		
Test0	10-100-140- 213	30	-	-		
Test 1-5%				1		
Test 2-5%						2
Test 3-5%		30	5	3		
Test 4-5%				4		
Test 5-5%				5		

The duration of the pulse is **5sec** (manual timer is used)

Test Setup	st Setup Results		ges & Persp
		Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ

Pressure(bar)	10	100	140	
Load(KN)	15,18	92	126	

213	
188	

Context

Measured Strains: top vs bottom fiber

Evaluation of Interface friction coefficient τ :

Increasing the Friction at interfa

Test Setup	Results		Challenges & Persp		
ace: How	?		Université Gustave Eiffel	LABORATOIRE RISQUE ROCH OUVRAGES GE	

Increasing the Interface roughn

Grouting of the nail:

Sticking Sand particles to grout done in PVC (aid of glue).

≻ W/C=0,45

Test Setup	etup Results		Challenges & Persp		
ess:)	Université Gustave Eiffel	LABORATOIRE RISQUE ROCH OUVRAGES GÉ	

Increasing the Soil confinement

Test Setup	Results		Challenges & Persp		
			Université Gustave Eiffel	LABORATOIRE RISQUE ROCHI OUVRAGES GÉ	

Adjustable compressible tube

Thank you for your attention

Ghida Hawwa: www.linkedin.com/in/ghida-hawwa-598634224

ghida.hawwa2@univ-eiffel.fr

Context

Measured Strains: at different frequencies

Friction model proposed by FRANK and ZHAO:

