

## Webinaire « Doctorants en géotechnique »

### **Congélation artificielle des sols :** caractérisation du comportement couplé thermo-hydromécanique





#### **JOUDIEH**, Zeina

**09 JANVIER 2024** 









LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

# Congélation artificielle des sols :

## caractérisation du comportement couplé thermo-hydromécanique

Zeina Joudieh <sup>1, 2</sup>

<sup>1</sup> LEMTA, CNRS, Université de Lorraine <sup>2</sup> Bouygues Travaux Publics



#### LEMTA: Joint Research Unit of the University of Lorraine and CNRS



| • |                                              |                             |
|---|----------------------------------------------|-----------------------------|
|   | MILIEUX FLUIDES, RHEOPHYSIQUE                |                             |
|   | Hydrodynamique et rhéophysique               |                             |
|   | Transferts dans les fluides                  | AT IRM POUR<br>L'INGÉNIERIE |
|   | Rhéologie de matériaux nano/micro-structurés |                             |
|   | ENERGIE ET TRANSFERTS                        |                             |
|   | Transport dans les milieux complexes         |                             |
|   | Feux                                         |                             |
|   | Mécanique des sols, géotechnique             |                             |
|   | VECTEURS ENERGETIQUES                        |                             |
|   | Hydrogène, systèmes électrochimiques         |                             |
|   | Gestion de la chaleur                        | -                           |
|   | Gestion de l'énergie électrique              |                             |

Mécanique des sols : thématiques de recherche











#### What is AGF?

Building of cross-passages during construction of an **urban subway tunnel** by shield method



Soft saturated soil:

- rich groundwater
- low mechanical strength
- $\Rightarrow$  ground is prone to buckling + collapsing



LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

#### Soil treatments



Soil stabilizing methods' utility in different soils (Harris 1995)





#### What is AGF?











### **Deformations associated with AGF**



#### Heave











## **Processes governing fine-grained soil freezing**



(*Joudieh 2023*)

Summary of a frozen soil profile and the processes that govern freezing

LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024



Passive frozen zone

Frozen fringe

Active unfrozen zone









## Factors influencing frost heave

#### Factors influencing soil freezing

| Condition                          | Factor                                                                                                                                                                            |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Site<br>conditions                 | <ul> <li>Soil type, grain size,</li> <li>Water content, water availability,</li> <li>Applied load, Overburden pressure</li> <li>Soil temperature, temperature gradient</li> </ul> |  |
| Project<br>settings and<br>choices | <ul> <li>Freezing temperature</li> <li>Distance from the injection axis,</li> <li>Thickness of soil layer(s) above tunnel,</li> <li>Thickness of the frozen soil</li> </ul>       |  |



LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

#### Factors influenced by overburden pressure

| Factor                               | Reference                                                                    |
|--------------------------------------|------------------------------------------------------------------------------|
| Water content and<br>Water migration | Penner and Ueda 1977; Loch and Kay<br>1978; Ming et al. 2016; Lu et al. 2021 |
| Suction in the frozen fringe         | Konrad and Morgenstern 1982; Ji et al.<br>2022                               |
| Segregation<br>temperature           | Konrad 1980; Azmatch 2013; Ji et al. 2022                                    |
| Thickness of the frozen fringe       | Konrad and Morgenstern 1982; Xia et al.<br>2005; Ji et al. 2022              |





## Effect of overburden pressure external on water intake

- As stress  $\nearrow$  time to absorb water  $\nearrow \rightarrow$  heave  $\checkmark$
- Water absorption starts when the advance rate of the freezing front < critical value





LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

Variations of the vertical deformations and water intakes of the saturated silty clay soil samples under different applied pressures (Zhang et al. 2017)



## Effect of overburden pressure?

- Develop an experimental setup
- Establish a test procedure
- Carry on tests to understand the behavior of soil during both freezing and thawing under different temperature conditions and applied pressures
- Use the acquired data to develop a model capable of predicting the F-T behavior of soil under applied pressure





Metro line 1 – Toledo Station (Russo et al. 2015)









## Modified temperature-controlled oedometer



Schematic diagram and a photograph of the oedometer cell



lemta

BOUYGUES TRAVAUX PUBLICS

#### Sample size

- Surface area of 40 cm<sup>2</sup> ullet
- Diameter of 71.4 mm  $\bullet$
- Height of 20 or 40 mm  $\bullet$

#### **Technical Specifications**

- Temperature: 40 -> + 90 °C lacksquare
- Maximum axial stress up to 5000 kPa  $\bullet$





#### Modified temperature-controlled oedometer



Schematic diagram and photograph of the modified TC oedometric system

### Modified temperature-controlled oedometer Repeatability

Silty soil: H = 20 mm, water content = 17.2%, dry density = 1.75 Mg/m<sup>3</sup>

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

### Modified temperature-controlled oedometer Repeatability

Silty soil: H = 20 mm, water content = 17.2%, dry density =  $1.75 \text{ Mg/m}^3$ 

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_4.jpeg)

## Modified temperature-controlled oedometer

6 months of a heavy experimental plan to:

- Develop a prototype: a miniature heave test
- Check the repeatability of the results
- Check saturation inside the TC oedometer
- Validate the experimental protocol  $\bullet$

![](_page_14_Picture_6.jpeg)

LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

Silty soil: H = 40 mm, water content = 17.2%, dry density = 1.75 Mg/m<sup>3</sup>

![](_page_14_Figure_9.jpeg)

![](_page_14_Picture_10.jpeg)

![](_page_14_Picture_11.jpeg)

![](_page_14_Picture_12.jpeg)

![](_page_14_Figure_13.jpeg)

![](_page_14_Figure_14.jpeg)

![](_page_14_Figure_15.jpeg)

![](_page_14_Figure_16.jpeg)

#### Freeze-thaw tests on silty sand under applied pressures Test protocol

1. Sample preparation

![](_page_15_Figure_2.jpeg)

2. Sample saturation + temperature homogenization

**Retained value:** 

H = 20 mmD = 71 mmWater content = 16.5 % Dry density=  $1.7 \text{ Mg/m}^3$  Applied pressure = 100 kPa for 10 mins to ensure contact Applied pressure = 10 kPa  $T_{cell} = +4 \sim 5 \,{}^{\circ}C$ Saturation time = 65 hours

![](_page_15_Picture_7.jpeg)

![](_page_15_Picture_8.jpeg)

![](_page_15_Picture_9.jpeg)

![](_page_15_Figure_11.jpeg)

![](_page_15_Picture_12.jpeg)

![](_page_15_Picture_13.jpeg)

### Freeze-thaw tests on silty sand under applied pressures

Freeze-thaw tests of silty soil under different applied stresses a) Variation of temperature at cell (°C) in function of time (hours). b) Variation of displacements (mm) in function of time (hours)

![](_page_16_Figure_2.jpeg)

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_5.jpeg)

![](_page_16_Picture_6.jpeg)

### Freeze-thaw tests on silty sand under applied pressures

#### Evolution of the normalized void ratio (-) in function of applied stress (kPa)

![](_page_17_Figure_2.jpeg)

![](_page_17_Picture_3.jpeg)

## Conclusions

- AGF = ft (Soil type, grain size, water content, water availability, applied load...)
- $\bullet$ the thickness of the frozen fringe, permeability (partially frozen soil)
- Heave  $\searrow$  as applied pressure  $\nearrow$
- Further research on higher applied pressure is in perspective

![](_page_18_Picture_5.jpeg)

LA CONGÉLATION ARTIFICIELLE DES SOLS : CARACTÉRISATION DU COMPORTEMENT COUPLÉ THERMO-HYDROMÉCANIQUE JANVIER 09<sup>TH</sup> 2024

Overburden pressure affects water content, water migration, suction in the frozen fringe segregation temperature,

![](_page_18_Picture_11.jpeg)

![](_page_18_Picture_12.jpeg)

# Thank you for your attention

![](_page_19_Picture_1.jpeg)

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

#### References

- Azmatch TF (2013) Frost Heave: New Ice Lens Initiation Condition and Hydraulic Conductivity Prediction. PhD Thesis, University of Alberta ٠
- Harris JS (1995) Ground freezing in practice. Thomas Telford, London, New York, NY ۲
- ۲ https://doi.org/10.1007/s12205-022-0603-6
- Joudieh Z (2023) An overview of the state-of-the-art on artificial ground freezing AGF. Internal report, ۲
- Jarad N (2016) Temperature impact on the consolidation and creep behavior of compacted clayey soils. Ph.D., University of Lorraine ۲
- Konrad JM (1980) Frost heave mechanics. PhD Thesis, University of Alberta ٠
- Konrad J-M, Morgenstern NR (1980) A mechanistic theory of ice lens formation in fine-grained soils. Can Geotech J 17:473–486. https://doi.org/10.1139/t80-056 ۲
- ۲ 406. https://doi.org/10.2136/sssaj1978.03615995004200030005x
- ۲ https://doi.org/10.1007/s12303-016-0005-1
- ٠ Science and Technology 192:103379. https://doi.org/10.1016/j.coldregions.2021.103379
- Penner E, Ueda T (1977) The dependence of frost heaving on load application preliminary results. Proceedings of an International Symposium on Frost Action in Soils 1:92–101 •
- ۲ 238. https://doi.org/10.1016/j.tust.2015.07.008
- Xia D (2005) Frost heave studies using digital photographic technique. MSc Thesis, University of Alberta ۲
- Xia D, Arenson L, Biggar K, Sego D (2005) Freezing process in Devon silt using time-lapse photography ٠
- 467. https://doi.org/10.1016/j.applthermaleng.2017.02.069

Ji Y, Zhou G, Hall MR, et al (2022) Thermal-Hydraulic-Mechanical Coupling Research on Overburden Pressure Mitigated Ice Lens Growth in the Freezing Soil. KSCE J Civ Eng 26:1606–1617.

Loch JPG, Kay BD (1978) Water Redistribution in Partially Frozen, Saturated Silt Under Several Temperature Gradients and Overburden Loads. Soil Science Society of America Journal 42:400-

Ming F, Zhang Y, Li D (2016) Experimental and theoretical investigations into the formation of ice lenses in deformable porous media. Geoscience Journal 20:667–679.

Lu X, Zhang F, Qin W, et al. (2021) Experimental investigation on frost heave characteristics of saturated clay soil under different stress levels and temperature gradients. Cold Regions

Russo G, Corbo A, Cavuoto F, Autuori S (2015) Artificial Ground Freezing to excavate a tunnel in sandy soil. Measurements and back analysis. Tunnel Underground Space Technol 50:226-

Zhang X, Zhang M, Lu J, et al (2017) Effect of hydro-thermal behavior on the frost heave of a saturated silty clay under different applied pressures. Applied Thermal Engineering 117:462-

![](_page_20_Picture_27.jpeg)

![](_page_20_Picture_28.jpeg)