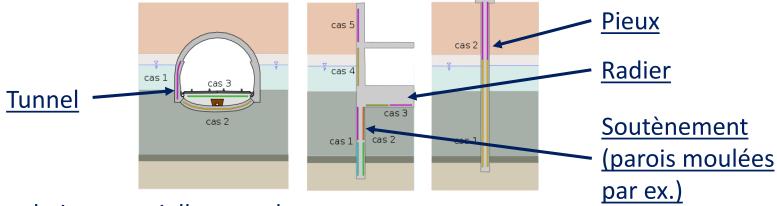
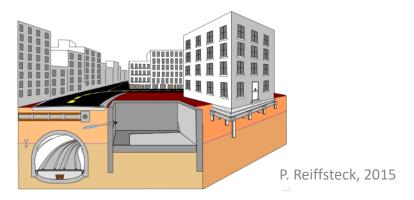


Conception énergétique des géostructures thermiques : détermination des propriétés thermiques et approche numérique

Sommaire

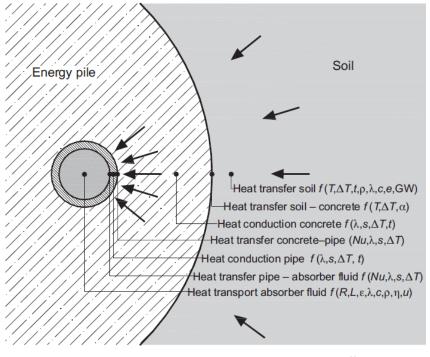

- Contexte
- Caractérisation thermo-hydraulique du système
- Potentiel géothermique
- Interactions avec les avoisinants
- Perspectives



Contexte

Différents types d'ouvrages géotechniques

Contexte urbain potentiellement dense



Contexte

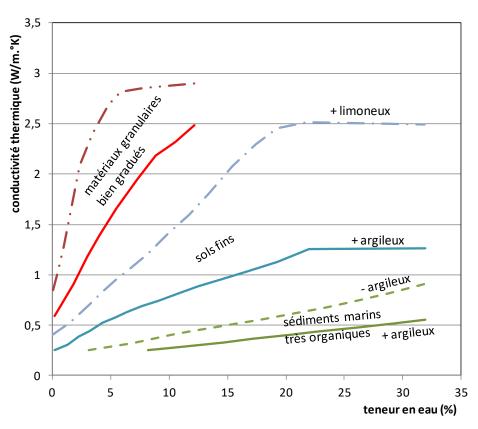
- Deux échelles d'étude
 - Echelle du tube échangeur de chaleur
 - Echelle du terrain
- Etude simultanée très difficile
 - Phénomènes variés
 - Flux laminaire/turbulent dans les tubes
 - Pertes de charge hydraulique
 - Conduction/advection
 - Effet barrage
 - Etc.
 - Échelles de temps et d'espace incompatibles
 - Seconde/minute + mm/cm dans les tubes
 - Mois/année + m/dam dans le terrain

H. Brandl, 2006

Caractérisation thermo-hydraulique du système

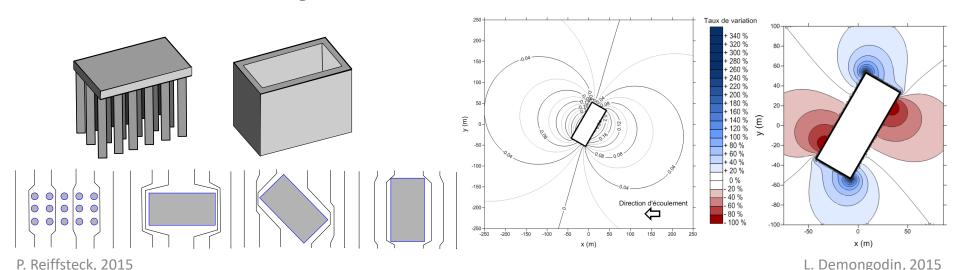
Bilan énergétique

$$C_{eff} \frac{\partial T}{\partial t} + div(\vec{j}_{cond}) + \rho_w C_w \vec{v}_D \cdot \nabla T - j_{int} = 0$$


- $C_{eff} \frac{\partial T}{\partial t}$ = terme transitoire (inertie thermique du système)
- $div(\vec{j}_{cond})$ = terme de conduction
- $\rho_w C_w \vec{v}_D \cdot \nabla T$ = terme d'advection
- j_{int} = production d'énergie volumique interne (négligeable)
- Présence d'une nappe ? Vitesse d'écoulement ?
- Multicouche géologique = large gamme de caractéristiques thermo-hydrauliques

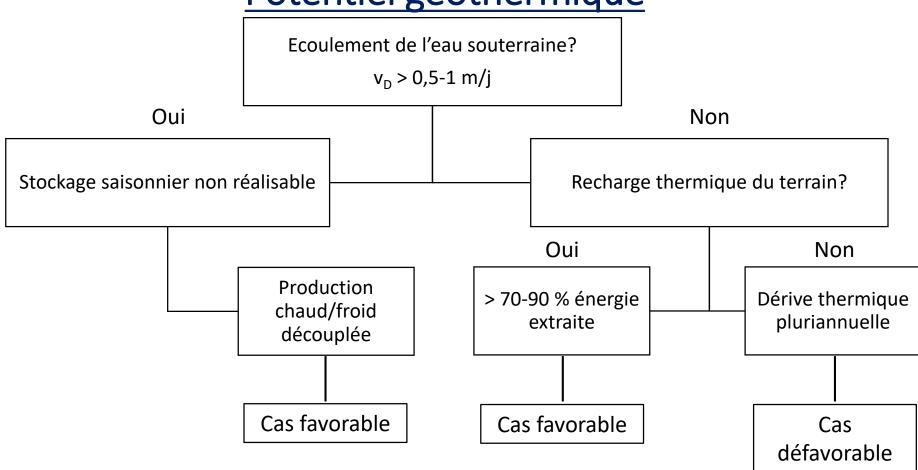
Caractérisation thermo-hydraulique du système

- Conductivité thermique λ (W/m.K)
 - Base de donnée bibliographique
 - Essais en laboratoire
 - Aiguille chauffante (échantillon intact ou sol reconstitué)
 - DRX (proportion minéralogique)
 - Essais in situ (Test de Réponse Thermique)
 - Valeur moyenne sur toute la hauteur
 - Influence de l'écoulement non négligeable


P. Reiffsteck, 2015, d'après EPRI 1989

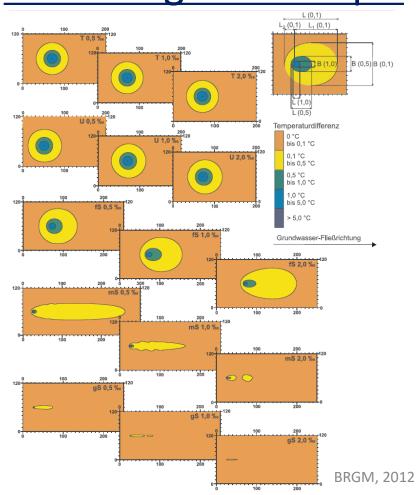
Caractérisation thermo-hydraulique du système

- Capacité thermique volumique C_v (J/m³.K)
 - Base de donnée bibliographique
 - Essais en laboratoire
- Vitesse d'écoulement v_D (m/s) ou perméabilité k (m/s)



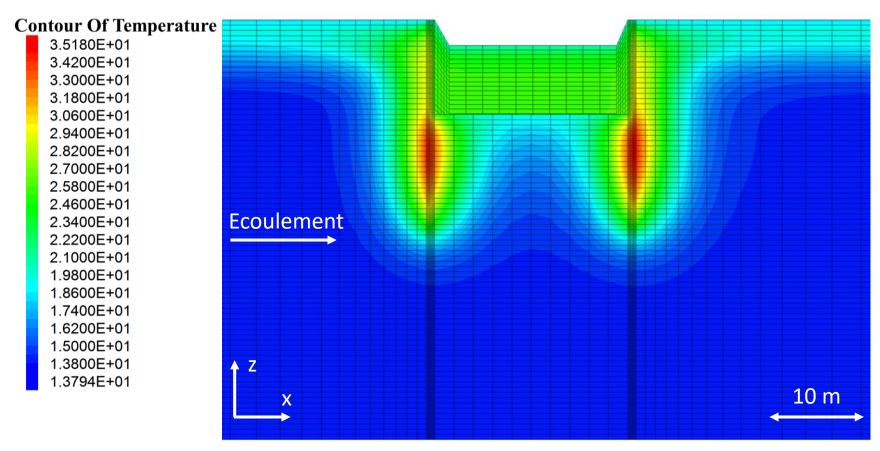
- Quantité d'énergie mobilisable dans le terrain sans modification durable de sa température \rightarrow quantité finie \rightarrow Bilan énergétique
- Paramètres dimensionnant:
 - Volume impacté
 - Recharge thermique Rôle de l'eau
 - Stockage saisonnier
- Propriétés thermiques du terrain
- Balance entre la conduction et l'advection dans toute la zone d'influence

$$C_{eff}\frac{\partial T}{\partial t} + div(\vec{j}_{cond}) + \rho_w C_w \vec{v}_D \cdot \nabla T = 0$$

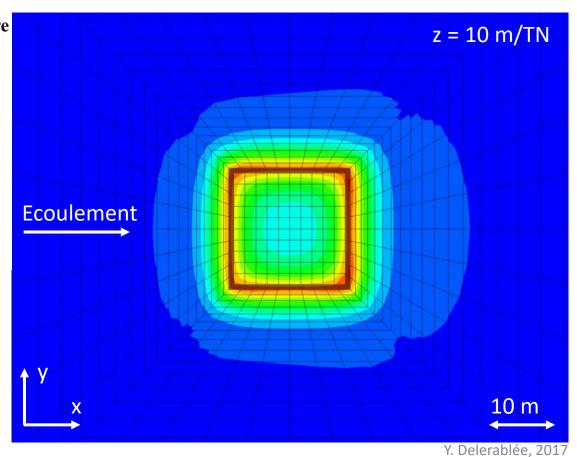


Potentiel géothermique

Gradient hydraulique


Yvon Delerablée Antea Group - IFSTTAR yvon.delerablee@anteagroup.com

Journée technique du Comité Français de Mécanique des Sols INSA Lyon le 5 octobre 2017



Potentiel géothermique

Yvon Delerablée Antea Group - IFSTTAR yvon.delerablee@anteagroup.com

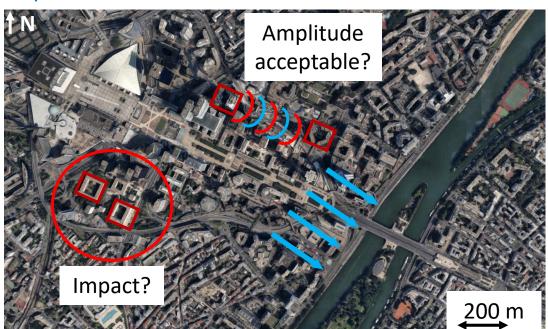
Journée technique du Comité Français de Mécanique des Sols INSA Lyon le 5 octobre 2017

- Modèle analytique
 - Première estimation du potentiel géothermique
 - Rapide
 - Difficultés pour prendre en compte tous les phénomènes (dérive thermique, etc.)
- Modèle numérique (2D/3D)
 - Meilleure approche des phénomènes physiques (effet barrage, dissymétrie du système, etc.)
 - Représentation du volume impacté (zone d'influence géothermique)
 - Détermination de champs de température
 - Possibilité d'appliquer des chroniques de besoin (pilotage en température ou en puissance)
 - Temps de calcul conséquent (couplage thermo-hydraulique)

Interaction avec les avoisinants

- De l'échelle du bâtiment à l'échelle de la cité
- Pas de réglementation concernant les géostructures thermiques
 - Premier arrivé = premier servi
 - Rayon d'influence acceptable?

- diminution des échanges advectifs
- Ouvrage géothermique en amont (panache thermique) \rightarrow dégradation du potentiel géothermique + risque de dérive thermique
- Ecran hydraulique + géothermie en amont -> Quel potentiel reste-t-il?


P. Reiffsteck, 2015

Interaction avec les avoisinants

- Etude numérique 2D/3D nécessaire
 - Prise en compte de l'écoulement
 - Effet barrage potentiel
 - Ondes thermiques saisonnières

www.google.fr (consulté le 19/09/2017)

Perspectives

- Evaluation des échanges conduction et advection
 - Études paramétriques nécessaires → abaques
 - Analyse part advection/conduction
 - Rôle réel de l'eau à approfondir
- Modélisation numérique 3D
 - Couplage écoulement global (ouvrage) + modèle analytique à l'échelle locale (tube)
 - Benchmark

Merci de votre attention!