Working with Pierre Foray to understand the behaviour of piles driven in sand

Pierre Foray Homage

27th January 2015

Richard Jardine
Background

Topic central for current large, multi €bn offshore wind-energy and hydrocarbon projects

Difficult, considered fully resistant to ‘theoretical refinement’ by Terzaghi & Peck

Conventional API & other approaches have poor reliability

Advances made in 25 years of Anglo-French research, last decade working with Pierre Foray and Grenoble 3S-R Lab

Continuing collaboration with France: SOLCYP, TC-209, Grenoble 3S-R and current PISA tests

Programme started in 1990 with Labenne field experiments with Prof Roger Frank’s LCPC team
IC instrumented piles

102mm diameter; up to 20m long

SSTs measure local σ_r and τ on shaft

Intensive testing in sand at Labenne and Dunkerque 1990-95

...and 4 UK clay sites 1985-96

The 4 + 2 Anglo-French team at Labenne, SW France, 1990
See Lehane, Jardine, Bond & Frank (1993), ASCE
Interrogating nature...

Do conventional theories work? Constant K earth pressures and N_q models? Or direct in-situ test methods?

If not, what really controls failure shaft shear τ and normal σ'_rf stresses & end-bearing q_b?

What are the missing key variables?

Are there really upper limits to τ and q_b?

Compression versus tension loading?
Multiple tests:
Loose dune sand: Labenne
Dense marine sand: Dunkerque

Continuous profiles of shaft radial and shear stresses, axial loads and tip resistance

Installation, equalisation and loading to failure

Tip pressures controlled by local q_c; shaft stresses also vary with pile tip position h

Shaft stresses vary strongly during loading
Labenne: end bearing
Pile end resistance q_b mirrors CPT q_c
Local shaft radial effective stresses

Shaft σ'_r during penetration at Labenne

Mirror q_c profile & vary with pile tip depth h

No constant K, but

$\sigma'_r = f (q_c, \sigma'_{vo}, h/R)$

Confirmed in dense Dunkerque sand

Effect of h/R
Loading response & effective stress paths, similar at Dunkerque and Labenne

σ'_r varies under load

Tension \neq compression

Simple interface law

$\Delta \sigma'_{rd} = 2G \frac{\delta r}{R}$

D_r influence is through G

δ_{cv} not affected by D_r

Tests on CLAROM piles explore open-end effects
Basis for new ICP design rules used for oil, gas & wind energy

Piled tripods for Borkum West II
German N. Sea Merritt et al 2012

Overy 2007
Practical impact: one large UK jacket based windfarm

Critical economies in onshore and offshore projects

But surprising ageing results from large scale Dunkerque tests:

1998-9 tests on fresh GOPAL piles

And cyclic tests on GOPAL Piles
Dunkerque tests in dense marine sands: 1988-2015

CLAROM, ICP, GOPAL, SOLCYP and current PISA tests

Variable q_c profile, up to 30 MPa

GOPAL: 8 steel pipe piles 457mm OD, 19m

Static & cyclic loading

Pile ages: 9 days to 1 year after driving

Ageing, creep & non-linear axial shaft stiffness,

Creep important at $Q > 1\text{MN}$

1st tension tests varying with age
Impact of axial cyclic loading

Load controlled
T = 60s

One-Way: tension
Two-Way: tension & compression

Plus: tension tests to failure

Failure depends on N, Q_{cyclic}, Q_{mean} & static tension capacity Q_T

Loads normalised Q_{cyclic}/Q_T & Q_{mean}/Q_T to allow for age & pre-testing
Impact of axial cyclic loading: can halve capacity

Jardine and Standing (2012)

Failure $N_f < 100$

$100 < N_f < 1000$

Stable to $N > 1000$

Shaft capacity grows

Cycling adds to ageing

Degradation much worse with bored piles: SOLCYP, Puech et al 2013
Need for scientific exploration of these ‘new’ phenomena

Working with Professor Pierre Foray
2005-2014
Model experiments with Prof. Pierre Foray

3S-R chamber, temperature & pressure control
Dense NE34 sand; CPT: $20 < q_c < 25$ MPa
Tests over months under 150 kPa
Up to 36 stress sensors

Instrumented Mini-ICP

Mini-ICP model pile

Stainless steel: 36mm OD

Cyclic jacking installation

Local measurements at three h/R levels of:
- Axial load
- Surface τ_{rz} & σ_r
- Plus tip loads etc

“Hands-on” with Pierre Foray in the 3S-R laboratory
“Heads-down” – problem solving...

Working even with a geo-endoscope
Many successful tests over 2007-2013 main programme
International team:
Academics, Post-Doc, PhD, MSc & technicians

Members from:
- Brazil
- Chile
- China
- France
- Italy
- Tanzania
- United Kingdom
What did we find?

Distributions of σ'_r, σ'_z & σ_θ around piles

Key to modelling ageing, cyclic response, group effects..

Supported by IC-Grenoble laboratory element & particle scale studies
Installation σ'_r trends in sand mass:

1000s data contoured

$\sigma_r/q_c = f(h/R, r/R, \sigma_{zo})$

Intense tip concentration
Unloading above tip

Sharp changes over each jacking cycle

Corresponding σ_z & σ_θ trends

Jardine, Zhu, Foray & Yang 2013
Geotechnique
Radial profiles of σ'_r/q_c and σ'_θ/q_c shortly after installation

σ_r and σ_θ profiles interlinked, peaks in at $2 < r/R < 4$

Critical to shaft capacity ageing theories

Compared later to advanced analysis
Local stress paths at Leading pile instrument
One cycle towards end of installation

![Graph showing stress paths with labels for peak load, unloading, start of push, and end point.](c)
Interface shear zone; Yang, Jardine, Zhu, Foray & Tsuha 2010; Geotechnique

Grey dense fractured shear zone ‘crust’ 0.5-1.5mm thick, growing with h. Not present if $q_c < 6$ MPa.
Breakage Zones 1, 2 & 3

Breakage starts under tip $\sigma'_{v} > 20$ MPa

Fractured sand displaced & spread over shaft: Zone 1

Further abrasion on shaft

Partial fracturing in outer Zones 2 & 3
Micro analysis of progressive grain crushing

(a) Fresh
(b) Zone 1
(c) Zone 2
(d) Zone 3
Qic-Pic laser analyses of small samples: Progression from fresh sand to Zone 1 ‘crust’

Breakage most severe in Zone 1, less in Zones 2 & 3
Related laboratory tests at Imperial College

Matching pile conditions in lab tests

Oedometer, interface ring-shear, high-to-low pressure stress path & cyclic experiments
High pressure oedometer compared to Zone 1
Void ratios, limits & sand states

Fresh NE34
$e = 0.63$

Average Zone 1
$e = 0.36$

Yang et al. (2010)
Replicating shear zones: ‘Bishop’ ring-shear interface tests

Coarse example of sands sheared against steel for metres σ'_n up to 800 kPa; Ho et al 2011

Wide range of sands: different trends to direct shear interface tests
High-to-Low Pressure Triaxial tests

High-to-Low pressures, without dismantling & changing soil fabric

Matching model pile installation stress paths

Altuhafi & Jardine 2011
High-to-Low pressure stress-path tests

- **K₀ compression**: tip advancing from above
- **Active shearing**: tip arrival with \(\sigma'_v > 20\text{MPa} \)
- **Unloading**: tip advancing to greater depth
- **Re-shearing**: in compression or extension at high ‘OCR’
Effects on angle of shearing resistance?

High pressure 1st shearing:
- Ductile response low peak ϕ'

Low pressure re-shear:
- Brittle and much higher peak ϕ'
- Critical to pile test interpretation

Graph shows the relationship between external strain and angle of shearing resistance. The graph includes data points for different pressures (P-T1, P-T2, P-T3) and external strain percentages.
Ongoing research

Ageing studies in lab and field
Rimoy, Silva, Jardine, Foray, Yang, Zhu & Tsuha (2015)
Under Review, Geotechnique

Simulating crushing and pile installation stresses
‘ALE’ Finite Element method with breakage mechanics:
Zhang, Yang, Nguyen, Jardine & Einav (2014)
Geotechnique Letters
End bearing and breakage: Zhang et al’s predictions

Predicted and measured pile tip stresses q_c

Contours of breakage parameter B:
- Fresh sand $B = 0$
- Fully fractured $B = 1$

Graph showing q_c (MPa) vs. penetration (mm) with curves for 50mm ID top membrane and numerical simulation.
σ'_r/q_c and σ'_θ/q_c profiles predicted during installation

Maxima within 30% of measurements

Encouraging agreement with cyclic penetration model pile tests

But predictions steady at h/R > 10, while shaft σ_r/q_c measurements keep falling with h/R

Improve by modelling shaft abrasion & cyclic penetration?
Second main theme in 3S-R experiments

Cyclic axial loading

Model pile lab tests: similar overall trends to Dunkerque field experiments, new insights

Parallel cyclic lab element testing

Integration into practical design
Stable Mini-ICP cycling: interface stress paths
Load-controlled to N > 1000
Stresses remain within Y_2 shaft capacity rises

Unstable stress paths
Mini ICP tests failing with $N < 100$

Displacement-controlled
Two-Way tests engage Y_3 and Y_4
Phase transformation at interface

Load-controlled
One-Way tests engage Y_2
Drift towards interface failure

Shaft capacity falls markedly
Matching cyclic conditions in lab element tests

Interface $\frac{\delta \sigma'}{\delta r} = 2G/R$
Constant Normal Stiffness? $G \neq$ constant, $R =$ variable

Apply undrained CNS = ∞ in Cyclic Triaxial CTX

Or Simple Shear CSS tests
Best performed in HCA

Pre-cycling stress path?
Undrained cyclic element tests: NE34 & Dunkerque sands

Yielding patterns and p' drift rates depend on:
- $CSR = q_{cyclic}/p'$ and N
- Shearing mode (TXL or HCA-SS)
- OCR & pre-cycling; creep & ageing periods

Pile stress paths, OCR = 4
Aghacouchak, Sim & Jardine 2015
SOLCYP and applications

SOLCYP: Puech et al 2013

AXIAL

LOADS (ULS)

Idealized cyclic loads
Rainflow

N=100

CYCLIC STABILITY DIAGRAM

Soil Data

Pile characteristics

CYCLIC DESIGN

Static design

DEGRADATION LAWS

Lab Testing:
- Soils: TXc/CSS
- Interfaces: CNS

Experimental data
- Model tests
- Field tests

in-situ testing:
- PMTc
- CPTc

Local Soil-Pile Analyses

Cyclic T-Z curves

Envelope t-z

SCARP

RATZ/PAXcy

Soil and Interface Behavioural Laws

Global Pile Analyses

Degraded capacity
Accumulated pile-head displacements

FEM Analyses

Jardine, Puech & Anderson 2012
Anderson, Puech & Jardine 2013

SUT 2012, Paris 2013 workshop

ICP static and cyclic methods for Borkum West II; Merritt et al 2012

Image from www.heavyliftspecialist.com
Summary

• Challenges posed by field behaviour. New scientific insights needed into ageing & cyclic response

• Critical investigations with Pierre Foray into pile installation stresses, grain-crushing, interface-shear & cyclic behaviour

• Intensively instrumented laboratory model experiments integrated with field, soil element & analytical research

• Results applied in major projects

• Still problems to solve:
 • Effect of scale on driven pile ageing?
 • More field tests needed: at Dunkerque, Larvik or Blessington?
 • Lateral/moment loading – new PISA programme underway: monopiles, tripods, jackets etc
Other acknowledgments

Sponsors & partners: BP, BRE, CNRS, IFP, EPSRC, Exxon, INPG 3S-R, HSE, Shell, SOLCYP, Total and others

Current and former co-workers: Steve Ackerley, Fatin Altuhafi, Francoise Brucy, Andrew Bond, Fiona Chow, Roger Frank, Itai Einav, Tony Ho, Reiko Kuwano, Barry Lehane, Alain Puech, Siya Rimoy, Matias Silva, Cristina Tsuha, Jamie Standing, Zhongxuan Yang, Bitang Zhu and many others