Caractérisation géophysique des digues : techniques à grand rendement, techniques ponctuelles et méthodes émergentes

Grégory Bièvre 1,2

¹ Centre d'Études Techniques de l'Équipement de Lyon, Laboratoire de Lyon

²Université de Grenoble, Institut des Sciences de la Terre

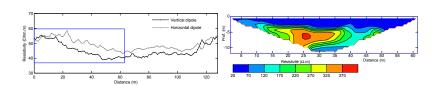
27 janvier 2011

Sommaire

- Introduction
- ► Techniques à grand rendement
- Techniques ponctuelles
- Méthodes émergentes
- Conclusion

- L'objectif de la géophysique est de retrouver la répartition de champs physiques dans le sol :
- Ces champs physiques, naturels ou provoqués, dépendent d'un ou plusieurs paramètres caractéristiques des matériaux dont on cherche à déterminer la répartition;
- ▶ À chaque paramètre physique sensible correspond une technique géophysique ;
- Les résultats des mesures font l'objet d'une interprétation géophysique qui aide à construire un modèle géologique (géotechnique, hydrologique, etc.);
- Des sondages d'étalonnage sont nécessaires systématiquement pour valider les mesures et les interprétations.

Méthode	Grandeur mesurée	Paramètre	Origine du champ physique
Gravimétrie	Champ de pesanteur	Masse volumique	Naturelle
Sismique	Temps de trajet	Vitesse d'ondes mécaniques	Naturelle ou provoquée
Résistivité	Potentiel électrique	Résistivité	Provoquée
Potentiels Spontanés	Potentiel électrique	Potentiel Spontané	Naturelle
Magnétique	Champ magnétique	Susceptibilité magnétique	Naturelle
Electromagnétique	Champ électromagnétique	Résistivité et permittivité	Provoquée
Radioactivité	Evénements	Radioactivité des roches	Naturelle ou provoquée


(D'après Lagabrielle, 1991)

Méthode	Grandeur mesurée	Paramètre	Origine du champ physique
Gravimétrie	Champ de pesanteur	Masse volumique	Naturelle
Sismique	Temps de trajet	Vitesse d'ondes mécaniques	Naturelle ou provoquée
Résistivité	Potentiel électrique	Résistivité	Provoquée
Potentiels Spontanés	Potentiel électrique	Potentiel Spontané	Naturelle
Magnétique	Champ magnétique	Susceptibilité magnétique	Naturelle
Electromagnétique	ectromagnétique Champ électromagnétique		Provoquée
Radioactivité Evénements		Radioactivité des roches	Naturelle ou provoquée

(D'après Lagabrielle, 1991)

Grand rendement vs ponctuel?

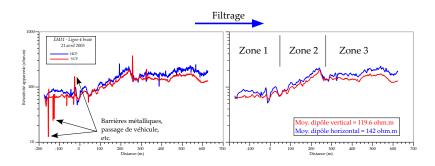
- ► Fonction du linéaire à ausculter ;
- Les techniques à grand rendement sont utilisées en premier pour fournir une vision approximative de la structure du sous-sol. Elles permettent d'ausculter l'ensemble du corps de digue en un temps « réduit » ; on obtient la mesure de la variation d'un paramètre le long des profils étudiés ;
- ► Les techniques ponctuelles sont employées dans un second temps, pour préciser la nature des anomalies détectées : profondeur, taille, etc.

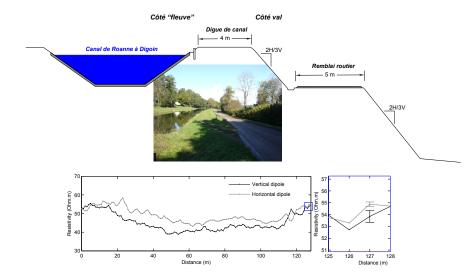
Techniques à grand rendement

Méthodes

- Électromagnétisme basse fréquence en champ proche (Slingram);
- Électromagnétisme basse fréquence en champ lointain (Radio-magnétotellurique);
- Radar géologique ;
- Traîné de résistivité aquatique (auscultation du sous-sol sous le canal ou la rivière) ou de surface;
- ► (Sismique ondes de surface.)

Électromagnétisme basse fréquence en champ proche (Slingram)



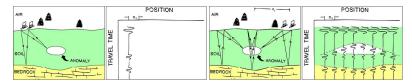

$$\sigma_a = \frac{2}{\pi . f. \mu_0 . r^2} \times \left| \frac{H_s}{H_p} \right| = \frac{1}{\rho_a} \tag{1}$$

Espacement des Fréquence		Profondeur d'exploration (m)		Résolution (m)
boucles (m)	d'acquisition (kHz)	Champ vertical	Champ horizontal	Resolution (III)
3.66	9.8	3	6	0.7

Exemple de mesures : digue de Loire à Sandillon

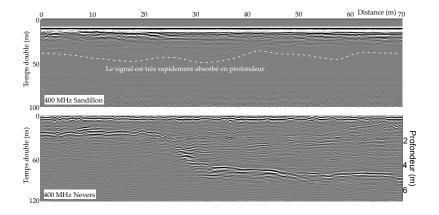
Exemple de mesures : canal de Roanne à Digoin

Avantages - limites

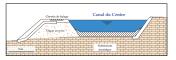

Avantages

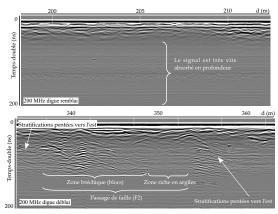
- Grand rendement possible: plusieurs centaines de mètres à quelques km par jour. Quelques dizaines de km possibles en mode tracté;
- ► Technique robuste et fiable;
- Interprétation principalement qualitative.

Limites


- Méthode principalement qualitative;
- ► Très sensible aux environnements métalliques.

Radar géologique





Exemple de mesures : digue de Loire

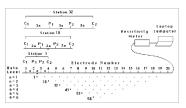
Exemple de mesures : canal du Centre à Rémigny

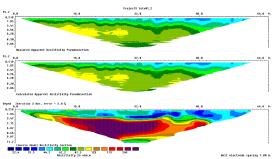
Avantages et limites

Avantages:

- Rapide, grand rendement possible;
- Maniable:
- ▶ Richesse des informations fournies (en cas favorable).

Limites:


- Compromis pénétration-résolution ;
- Nécessite des sols électriquement résistants ;
- Nombreux facteurs d'influence ;
- Le traitement des données représente une quantité de travail importante. Il peut éventuellement être source d'artefacts.


Techniques ponctuelles

Méthodes

- Tomographies de résistivité électrique (ERT);
- Sismique réfraction et tomographies sismiques ;
- Radar géologique ;
- Potentiels Spontanés (PS);
- Techniques thermographiques;
- (Sismique ondes de surface.)

Tomographie de résistivité électrique (ERT)

Avantages et limites

Avantages:

- ▶ Mesures automatisées ;
- Technique adaptée à un monitoring temporel (éventuellement à l'aide de saumure).

Limites:

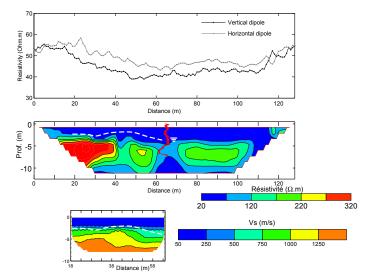
- Les terrains à différencier doivent présenter des contrastes électriques suffisants ;
- Faible rendement (quelques dizaines à centaines de mètres par jour);
- Rend compte en 2D de mesures prises dans un contexte très fortement 3D dont l'effet n'est pas homogène dans le temps;
- Non-unicité de la solution.

Méthodes « émergentes »

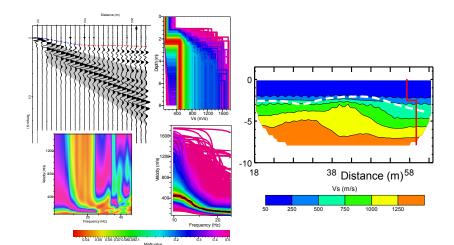
- Sismique en ondes de cisaillement (Vs);
- Sismique en ondes de surface (ondes de Rayleigh, ondes de Love);
- ▶ Techniques de corrélation d'ondes.

Vitesse des ondes de cisaillement (Vs)

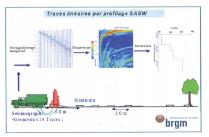
Intérêt par rapport à Vp?

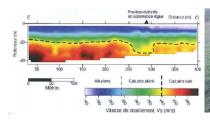

- Pas d'influence de l'eau ;
- Très sensible aux variations de densité du milieu;
- Meilleure résolution que les ondes P;
- Permet d'estimer les paramètres dynamiques du milieu.

$$\mu = \rho \cdot V_s^2 \tag{2}$$


Inconvénients

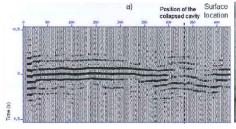
- ► Difficile de générer des ondes S énergétiques ;
- Non-unicité de la solution.


Exemple de mesures : canal de Roanne à Digoin



Ondes de surface (MASW, ondes de Love)

Ondes de surface (MASW, ondes de Rayleigh)



(Travaux du BRGM)

Ondes de surface (CCASW, ondes de Rayleigh)

(Travaux du BRGM)

Conclusions

Le choix des méthodes à employer dépend de plusieurs facteurs :

- Linéaire à reconnaître ;
- Nature du corps de digue et/ou du substratum ;
- Profondeur à atteindre et résolution souhaitées :
- Nature de la cible à caractériser.

Ces méthodes permettent d'implanter au mieux les sondages mécaniques

- qui permettront de confirmer les anomalies détectées et de procéder aux prélèvements pour essais de laboratoire;
- qui fourniront des calibrages afin de monitorer l'évolution des paramètres (hydrologiques et/ou mécaniques).