Recommandations pour le CALCUL AUX ETATS-LIMITES DES OUVRAGES EN SITE AQUATIQUE

Série : DISPOSITIONS COMMUNES

VALEURS REPRESENTATIVES DES PROPRIETES DE BASE DES MATÉRIAUX

Sommaire : pages 2 à 4
Chapitre 3.3 : pages 48 à 50
1. OBJET

2. DEFINITION GENERALE DES VALEURS REPRESENTATIVES DES PROPRIETES DE BASE DES MATERIAUX

2.1 INTRODUCTION ET PRINCIPALES NOTATIONS

2.2 SOURCES D'INCERTITUDES

2.3 VALEUR CARACTERISTIQUE

2.3.1 DEFINITION

2.3.2 DETERMINATION

2.4 VALEUR DE CALCUL

3. PROPRIETES DE BASE DES SOLS

3.1 RECOMMANDATIONS GENERALES

3.1.1 DEROULEMENT DES ETUDES GEOTECHNIQUES

3.1.2 PARAMEtre LOCAL ET PARAMEtre ETENDU

3.1.3 VALEURS ET PROFILS REPRESENTATIFS

3.1.3.1 Valeurs mesurées et valeurs dérivées

3.1.3.2 Valeur moyenne inférieure

3.1.3.3 Valeur basse

3.1.3.4 Valeur caractéristique

3.1.3.5 Valeur de calcul

3.1.4 EMPLOI DES TECHNIQUES STATISTIQUES

3.1.5 PRESENTATION SYNTHETIQUE DE LA DEMARCHE

3.1.5.1 Détermination des valeurs représentatives

3.1.5.2 Cas où le sol peut être reconnu lors de phases d'études (sols en place)

3.1.5.3 Cas où le sol ne peut pas être reconnu lors de phases d'études (sols rapportés)

3.1.5.4 Cas où le sol peut être modifié après la reconnaissance

3.1.6 ETUDE DES SITUATIONS DE PROJET

3.2 RECOMMANDATIONS PARTICULIERES

3.2.1 REMARQUES METHODOLOGIQUES ET CLASSES DE PRELEVEMENT

3.2.2 RESISTANCE AU CISAILEMENT DES SOLS

3.2.2.1 Comportement des sols et courbe intrinsèque

3.2.2.2 Conduite et exploitation des essais de laboratoire

3.2.2.3 Résistance au cisaillement non drainé

3.2.2.4 Résistance au cisaillement drainé

3.2.2.5 Contraintes élastiques et contraintes totales

3.2.2.6 Autres types de résistance au cisaillement

3.2.3 PARAMETRES DE RESISTANCE ET DE DEFORMABILITE

3.2.3.1 Conductivité et exploitation des essais

3.2.3.2 Pression limite pressiométrique

3.2.3.3 Résistance de pointe pénétration

3.2.3.4 Pression de flux pressiométrique

3.2.3.5 Module pressiométrique

3.2.3.6 Coefficient de Poisson

3.2.3.7 Pression des terres au repos

3.2.3.8 Élongation
7.1.2.2 Autres organes ... 72
7.1.3 MATERIAUX DES APPAREILS D’APPUI 73
7.1.4 MATERIAUX DE ROULEMENT 74
7.1.5 MATERIAUX DE FROTTEMENT 75
7.1.6 MATERIAUX DES ARTICULATIONS DES PORTES D’ECLUSE 75
7.1.7 MATERIAUX DE BLINDAGE ET DE PORTEE POUR L’ETANCHEITE 75
7.1.8 MATERIAUX DES ORGANES DE LIAISON 75
7.2 VALEURS REPRESENTATIVES 76

8. TEXTES DE REFERENCE 77
3.3 COEFFICIENTS PARTICIERS

Voir l'application à un CCTP.

Voir le principe de pénalisation.

Voir des exemples d'application :
- appartement sur pieux
- duc d'Alte d'accostage
- duc d'Alte d'amarrage
- quai en blocs
- rideau de soutènement

3.3.1 COEFFICIENTS PARTICIERS POUR LES ETATS-LIMITES ULTIMES

Les coefficients partiels ci-après résultent d'estimations et d'expertise ; ils ne sont pas justifiés à l'heure actuelle par des considérations statistiques ni probabilistes.

Les valeurs représentatives étant toujours des valeurs possibles des paramètres, on vérifie que l'application des coefficients partiels ne conduit pas à des valeurs de calcul aberrantes, lorsque l'on a identifié une borne inférieure certaine pour ces paramètres.

Dans le cas général :

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>favorable</th>
<th>défavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>résistance au cisaillement non drainé</td>
<td>θ₀</td>
<td>1,40</td>
</tr>
<tr>
<td>tan (θ₀)</td>
<td>sans objet, en général θ₀ = 0</td>
<td></td>
</tr>
<tr>
<td>résistance au cisaillement drainé</td>
<td>c'</td>
<td>1,20</td>
</tr>
<tr>
<td>tan (θ₀')</td>
<td>1,20</td>
<td>1/IM</td>
</tr>
<tr>
<td>résultats d'essais en place(*)</td>
<td>θ₀ + θ₁</td>
<td>1,00 (*)</td>
</tr>
<tr>
<td>poids volumique du sol</td>
<td></td>
<td>1,00</td>
</tr>
<tr>
<td>autres paramètres</td>
<td></td>
<td>sans objet</td>
</tr>
<tr>
<td>paramètres de déformabilité (résultats d'essais codométrique, module prossiométrique)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paramètres hydrogéologiques</td>
<td></td>
<td>sans objet</td>
</tr>
<tr>
<td>paramètres d'état et d'identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>paramètres dynamiques</td>
<td></td>
<td>sans objet</td>
</tr>
</tbody>
</table>

(*) Dans la pratique, la sécurité sur les résultats d'essais en place est prise en compte :
par des coefficients partiel de résistance γ_r (capacité portante des fondations superficielles, paramètres de charge des éléments de fondation profonde, résistance à la traction des tirants d’ancrage, des scelllements et des renforcements),

par des coefficients partiel γ_m sur les paramètres d’interaction sol-structure (courbe de réaction des engins), courbe de réaction des plis chargés horizontalement en tête).

S’il n’est donc pas appliqué formellement de pondération à la source de la pression limite pressiométrique ou de la résistance de pointe pénétrométrique, il faut néanmoins rappeler que les incertitudes généralement estimées sur ces paramètres les rendraient justiciables d’un coefficient partiel γ_m de 1,40.

Pour les sols renforcés (CLOUTERRE 91) - voir le fascicule Talus et pentes :

<table>
<thead>
<tr>
<th></th>
<th>ouvrage courant</th>
<th>ouvrage sensible</th>
</tr>
</thead>
<tbody>
<tr>
<td>résistance au cisaillement non drainé</td>
<td>c_v</td>
<td>1,30</td>
</tr>
<tr>
<td>résistance au cisaillement drainé</td>
<td>c</td>
<td>1,50</td>
</tr>
<tr>
<td>$\tan (\varphi')$</td>
<td>1,20</td>
<td>1,30</td>
</tr>
<tr>
<td>résultats d’essais en place</td>
<td>$p' - p_0$</td>
<td>1,90</td>
</tr>
<tr>
<td>E_u</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>

Une approche de la sécurité par une étude de sensibilité aux paramètres de résistance au cisaillement est proposée dans le fascicule *Diggés des voies navigables* en alternative à la démarche des coefficients partiel.

L’annexe 1 fournit quelques éléments relatifs à la sensibilité des paramètres.

3.3.2 COEFFICIENTS PARTIELS POUR LES ETATS-LIMITES DE SERVICE

Il n’est pas introduit de coefficient de type γ_m_{serv}.
3.3.3 COEFFICIENTS PARTIELS EN SITUATION ACCIDENTELLE

Dans les cas courants, il n’est pas introduit de coefficient de type $\gamma_{M, acc}$.

Pour les sols renforcés (CLOUTERRE 91) - voir le fascicule Talus et pentes :

<table>
<thead>
<tr>
<th></th>
<th>ouvrage courant</th>
<th>ouvrage sensible</th>
</tr>
</thead>
<tbody>
<tr>
<td>résistance au cisaillement non drainé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c_u</td>
<td>1,20</td>
<td>1,30</td>
</tr>
<tr>
<td>résistance au cisaillement drainé</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ'</td>
<td>1,40</td>
<td>1,50</td>
</tr>
<tr>
<td>$\tan (\phi')$</td>
<td>1,10</td>
<td>1,20</td>
</tr>
<tr>
<td>résultats d’essais en place</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_r - P_0$</td>
<td>1,00</td>
<td>1,10</td>
</tr>
<tr>
<td>E_M</td>
<td>1,00</td>
<td>1,00</td>
</tr>
</tbody>
</table>