



Qianfeng GAO (LEM3-UL), Mahdia HATTAB (LEM3-UL), Jean-Marie Fleureau (MSSMat-CentraleSupélec), Pierre-Yves HICHER (GeM-EC Nantes )

Journée CFMS & CFMR "Microstructure des sols et des roches argileux – Conséquences pour l'ingénieur

25 octobre 2018

# Partie 1 – Etude expérimentale

# Partie 2 – Modélisation Micromécanique

- **1** Introduction
- 2 Comportement mécanique Chemins triaxiaux
- 3 Comportement dilatant et état microstructurelle
- 4 Conclusions







### Propriétés du matériau modèle

| Matériau   | Limite de          | Limite de  | Indice de  | Densité des grains<br>solides ρ <sub>s</sub> /ρ <sub>w</sub> | Indice de   | Indice de |
|------------|--------------------|------------|------------|--------------------------------------------------------------|-------------|-----------|
|            | liquidité          | plasticité | plasticité |                                                              | compression | gonflemen |
|            | w <sub>L</sub> (%) | $w_P(\%)$  | $I_p$ (%)  |                                                              | Сс          | t Cs      |
| Kaolin K13 | 42                 | 21         | 21         | 2.63                                                         | 0.28        | 0.09      |





DOT • DEDOTAT

Sgrad A = Int. and Frank No. - 1005







5





2. Comportement Mécanique

1. Introduction

4. Conclusions

#### **Comportement mécanique - Influence du chemin des contraintes**







1. Introduction

2. Comportement Mécanique

**3. Dilatance et Microstructure** 

4. Conclusions

### Caractérisation de la Microstructure – Orientation des particules (MEB)



#### Caractérisation de la microstructure – Forme et Orientation des pores (MEB)

(Q. Gao, 2018)



(a) Grayscale image; (b) Threshold; (c) Separation; (d) Ellipses fitting Adjustable watershed algorithm

Identification de la géométrie des pores

1. Introduction

Définition des propriétés des pores forme et orientation

1. Introduction

4. Conclusions

### Caractérisation de la microstructure – Forme et Orientation des pores (MEB)



#### **3. Dilatance et Microstructure** 2. Comportement Mécanique 4. Conclusions 1. Introduction **Caractérisation de la microstructure – Microfissuration (Microtomographie)** (c) Dilative) (a) Contractive) $\sigma_1$ Meso-cracks Pore ..... Meso-crack #2 $\sigma_1$ 500 slices Projection de OCR3.3\_P300\_P2 Projection de NC\_P300\_P2 (b) Contractive (d) Dilative Length: 0.465 mm Pore-Width: 0.034 mm Pore Pore Angle: $43.2^{\circ}$ Meso-crack # V 500 µm 500 µm Coupe de NC\_P300\_P2 Coupe de OCR3.3\_P300\_P2



### **Dilatance et Fluage**

#### (D. Zhao, 2017)



## **Partie 1 – Conclusions**

- 1 À un niveau de contrainte donné, sur le plan des contraintes, l'argile normalement consolidée présente toujours une contractance; alors que la déformation volumique de l'argile surconsolidée dépend du chemin de contraintes : elle peut être en contractance (chemin classique) ou en dilatance (chemin purement déviatoire).
- 2 Au niveau microstructurelle, le comportement dilatant sur chemin purement déviatorique est associé à une orientation des particules argileuses organisées par groupe, associées face-face le long d'une ligne brisée.
- 3 Les propriétés des pores sont tout à fait cohérents avec l'orientation des particules, ils sont en forme elliptiques, plutôt ouverts, formant des micro-zones ou peut s'activer le mécanisme de glissement. A un niveau de contrainte proche de la rupture, le fluage provoque un effondrement brutal de l'éprouvette.
- 4 Le phénomène de dilatance dans les argiles remaniées saturées est gouverné par le développement d'une microfissuration plus ou moins orientée plus ou moins ouverte, et qui peut se propager jusqu'à l'échelle mésoscopique.

# Partie 2 – Modélisation Micromécanique

### Approche par le modèle de Chang-Hicher (2005)

Comportement sur chemin isotrope



Ching-Shung CHANG cchang@engin.umass.edu



# Approche micromécanique

 Mécanismes locaux : introduire les propriétés physicochimiques à travers des forces répulsives and attractives agissant entre clusters
 Nécessite une validation sur un matériau dont la minéralogie est variable : V2M mélange de Montmorillonite et de Kaolinite

Hattab M, Chang C-S. (2015) « Inter-aggregate forces and energy potential effect on clay deformation »

0%

K

 $M_{10}$ 

%

 $M_{65}$ 

%

100

 $M_{100}$ 

%

50%

M<sub>50%</sub>

M<sub>35</sub>

%

# Isotropic paths and Mineralogy variation



Hammad T, Hattab M, Fleureau J-M, European Journal of Environmental and Civil Engineering (2013)

### Local properties and Hypothesis



M<sub>65%</sub> microstructure (Hammad et al., 2013)

#### Hypothesis for intercluster interactions:

**1-** Deformation of the assembly is primarily caused by the change of inter-cluster pores. Clusters are considered as no deformable bodies.

**2-** Interacting forces exist between two neighboring clusters and between water and the charged surface of clusters.

**3**-Two types of interacting forces: electrical repulsive and attractive similar to the van der Waals forces. Both contribute to the interclusters normal force.

#### Structure en agrégats des argiles :





🔞 d\_





#### Macrostrain-local displacement

$$\delta_i^{\alpha} = \varepsilon_{ij} l_j^{\alpha}$$
$$\delta = \frac{\varepsilon_v l_0}{3}$$
$$w = w_0 + \frac{3\delta}{l_0} (100/d_s + w_0)$$

$$l_0 = 2R_0 \sqrt[3]{(1+e_L)/(1+0.35)}$$

#### 2 Parameters:

 $I_0$ :  $I_c$  at liquid limit  $R_0$ : mean radius of the clusters (SEM photoanalyses)



Under isotropic loading conditions

**Microrelation and local parameters** 





### **Micro-Macro Transition**



 $\sigma_{ij} = \frac{1}{V} \sum_{i}^{N_c} f_j^{\alpha} l_i^{\alpha}$ 

 $N_c/V = \frac{12}{((\pi/3)(2R)^3(1+e))}$  $I_c = 2R_0 \sqrt[3]{(1+e)/(1+0.35)}$ 



$$\sigma_m = \frac{f l_c N_c}{V}$$

Micromechanical modeling by CHANG (1988), Chang and Liao (1994) – Chang and Hicher (2005)



$$\sigma_m = \frac{f l_c N_c}{V}$$

$$I_c = 2R_0 \sqrt[3]{(1+e)/(1+0.35)}$$





#### Local equation resolution for the three particular points

 $\widetilde{B}, \widetilde{A} \text{ and } d_{\min}$ 

# Identify from macro experimental data



 $f = -\widetilde{B} R \, d_{\min}^{-1} e^{-d_{\min}^{-1}(l_c - 2R)} + \widetilde{A}R^2 \left| \frac{l_c}{\left(l_c^2 - 4R^2\right)^2} + \frac{1}{l_c^3} - \frac{2}{l_c\left(l_c^2 - 4R^2\right)} \right|$ 



### Simulation results and comparison with experimental results



### **Partie 2 – Conclusions**

- 1 Encouraging results are obtained showing good agreement between experimental results and simulations, highlighting clearly the variation of the behavior related to the montmorillonite fraction variation on isotropic path
- 2 Micromechanical Chang modelling appears as as quite relevant to consider Physical-Chemical aspects in the clay behavior
- 3 Physical Chemical aspects between clusters are taken into account through repulsive and attractive forces similar to double layers and van deer Waals forces
- 4 Parameters choice for the local law permit to estimate these forces between clusters in the case of a mix kaolinite/montmorillonite clay, whose the variation of mineralogy and physical properties are caused by the percentage variation of montmorillonite fraction.