Actes du colloque - Volume 4 - page 209

2859
Skyscrapers of «Moskva-City» Business Center - Tests of Bored Piles
Gratte-ciel du centre d’affaires « Moskva-City » – Essais de pieux forés
Shulyatiev О.А., Ladyzhensky I.G. Yastrebov P.I.
Gersevanov Research Institute of Bases and Underground Structures, Moscow, Russia
ABSTRACT: The Moscow International Business Center (MIBC) “Moskva-CITY” is a complex of 19 sky-scraper buildings. The
buildings are supported by 20-30 m long 1.2-1.5 m dia piles, spaced at 3-5 m. Behavior of a pile within such a group differs from that
of a standalone single pile. Therefore, analysis of such a footing requires prior determination of pile side and tip resistance. The paper
describes a known test technique, based on application of a jacking system, and specially developed for «Moskva-CITY» system, with
the test load applied downward with the help of a measuring system and jacks that act separately on the pile tip and on its side surface.
The obtained test data was used for the project design analysis to verify the applied analytical model and the respective soil parameters.
RÉSUMÉ : Le Centre d’Affaires International de Moscou “Moskva-CITY est un complexe de 19 gratte-ciels. Les bâtiments sont fon-
dés sur des pieux de 20 à 30m de long, de 1,2 à 1,5 m de diamètre, espacés de 3 à 5 m. Le comportement d’un pieu dans un groupe est
différent du comportement du pieu seul. L’analyse de telles fondations demande d’abord la détermination du frottement latéral et de la
résistance de pointe. La communication décrit un essai technique, basé sur l’application d’un système de vérins, élaboré spécialement
pour le projet «Moskva-CITY», avec la charge appliquée vers le bas grâce à un système de mesure et des vérins qui agissent séparé-
ment sur la pointe du pieu et sur sa surface latérale. Les résultats obtenus ont été utilisés pour l’analyse de la conception du projet, afin
de vérifier la modèle analytique et les paramètres du sol adoptés.
1 INTRODUCTION
MBIC is located on the Krasnopresnenskaya embankment
and consists of a group of unique high-rise buildings (Figure 1)
in one architectural complex. The terrain, divided into 20 sites,
will include a central transport hub yet to be erected (with 2
conventional subway lines and a mini-subway line), a complex
of intricate underground structures, transport intersections, etc.
Figure 1. MIBC photo (August 2012).
The downtown location of MIBC gives easy access to the
complex. The 15 sky-scrapers are designed up to 150 to 400 m
high with different numbers of stories. Most of them feature a
frame-shaft design i.e., the staircase-elevator core is fixed to-
gether with ventilation shafts and other service premises, to
which the building framework columns are fixed by floor discs.
CITY Geology of the terrain is characterized by Carbon de-
posits (С3, Figure 2). The soils top down from the surface are
represented by an upper fill (1), underlain by limestone allu-
vium (2), alternating limestone, marl and hard clay layers (3-8).
Such soil conditions dictated application of raft footings, pile
footings and piled raft footings (Petrukhin et al, 2008). The pile
footings under the high-rise buildings, bearing more than
0,4MPa mean pressure, consist of 1,0-1,5 m dia bored piles,
spaced at 3 – 5 m. The piles are long so that they penetrate
through softer clays, marls and fissured limestone to rest on
medium-hard and hard Suvorovsky bed (Figure. 2, geotechnical
element 7) and Podolsky-Myachikovsky bed (Figure 2, geo-
technical element 8), having Rc=20 – 40МPа.The footing under
the tower on the site is an exception in that the supporting piles
rest on Ratmirovsky medium strength limestone (geotechnical
element 5).
Figure 2. Geotechnical section
Pile footing analysis showed that the
piles are loaded non-uniformly both in
plan and along their length. The peripheral
piles bear times 1,5-2,5 greater loads then
the internal ones (Petrukhin et al, 2008;
Kharichkin A.
et al, 2009), and this was
taken into account in the project design,
therefore, some corner piles (site 4) have
larger diameter (1,5 m) than that of inter-
nal ones (1,2 m). Distribution of forces
along the pile length is different for dif-
ferent piles and is essentially different for
a single pile. Therefore, such footing de-
sign requires 3D numeric analysis. In
order to perform such analysis it is neces-
sary to determine pile side and tip resis-
tances on the basis of pile test data.
The paper presents data of pile
tests, conducted by different methods, this
data was compared and the application in
design practice was analyzed.
1...,199,200,201,202,203,204,205,206,207,208 210,211,212,213,214,215,216,217,218,219,...822