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An undrained upper bound solution for the face stability of tunnels reinforced by 
micropiles

Une solution en limite supérieure non drainée pour la stabilité du front de tunnels renforcés par 
micropieux
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ABSTRACT: Tunnel in difficult soils may require procedures to prevent tunnel face failures. Face stabilization can be achieved by
the installation of some structural elements. This paper presents an analysis of face stability of shallow tunnels in undrained soils
reinforced by an umbrella of subhorizontal micropiles. Upper bound solutions for two dimensional plane strain conditions are given
including the effect of micropiles. The micropile umbrella is embedded in the soil and supported on the tunnel lining. The
kinematically admissible collapse mechanism defined to calculate the upper bound solution includes the action provided by a
subhorizontal micropile at limiting conditions. The solutions are given in practical dimensionless charts which are useful to quantify
easily the effect of the umbrella of micropiles. The plots provide a simple procedure to design the umbrella. The most relevant
properties defining the umbrella are grouped into a single dimensionless coefficient which includes the yielding conditions and the
geometry of the micropiles as well as the distance between them. 

RÉSUMÉ : Les tunnels dans les sols difficiles peuvent nécessiter des procédés pour prévenir les ruptures du front du tunnel. La
stabilisation du front peut être réalisée par l’installation de certains éléments structurels. Cet article présente une analyse de la stabilité
du front dans des tunnels peu profonds en conditions non drainées renforcés par un parapluie de micropieux subhorizontaux. Des 
solutions de la limite supérieure pour des conditions bidimensionnelles de déformation plane sont présentées, y compris l’effet des 
micropieux. Le parapluie de micropieux est intégré dans le sol et soutenu sur le revêtement du tunnel. Le mécanisme de rupture
cinématiquement admissible défini pour calculer la solution de la limite supérieure comprend la réponse prévue par un micropieu
subhorizontal dans des conditions limites. Les solutions sont données dans des graphiques pratiques et sans dimensions qui
fournissent une procédure simple de concevoir le parapluie. Les propriétés les plus pertinents qui définissent le parapluie sont
regroupées en un seul coefficient sans dimension qui inclut les conditions de plastification et de la géométrie des micropieux, ainsi 
que la distance qui les sépare. 
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1 INTRODUCTION  

Tunnel in difficult soils may require procedures to prevent 
tunnel face failures. In tunnel excavated by means of boring 
machines, a pressure can be applied against the face to 
counteract water and earth pressure. Several publications 
provide procedures to calculate the pressure required for 
stability. Well known solutions given initially by Davis et al. 
(1980) offer practical dimensionless charts for shallow tunnels 
in cohesive materials based on plasticity theorems (upper and 
lower bound solutions). This contribution was followed by 
several authors that presented similar solutions for frictional 
materials (Leca and Dormieux 1990) or improved solutions by 
using limit equilibrium, finite difference and finite element 
methods (Lyamin and Sloan 2002a,b, Augarde et al. 2003, 
Vermeer et al. 2002, Klar et al. 2007, among others).  

Another calculation approach is to use Limit Equilibrium 
techniques (Anagnostou and Kovari 1996). They provide their 
results in terms of “bearing capacity” expressions. Finite 
Element and Distinct Element methods have been used 
extensively to examine face stability, in most cases under three 
dimensional conditions (Vermeer et al. 2002, Galli et al. 2003, 
Melis and Medina 2005). Among them, Vermeer et al. (2002) 
determined failure conditions of the face by means of a “c, 
reduction method” and provided three dimensional solutions for 
the drained case. 

Face stabilization can also be achieved by the installation of 
some structural elements (bolts distributed in the front, concrete 
prevaults and umbrellas of micropiles). Several analysis of 
tunnel face stability taking into account the effect of a prevault 
and a reinforcement by bolts have been published (Peila et al. 

1996, Wong et al. 2000, Yoo and Shin 2003, Lignola et al. 
2008, 2010). However, limited attention has been paid to the 
reinforcement of tunnel faces by micropiles. 

This paper presents a stability analysis of tunnel faces 
including an umbrella of sub-horizontal micropiles. The 
micropiles are considered as beams subjected to the kinematic 
motion imposed by the assumed failure mechanism. The 
limiting resistance of the supporting beams is first addressed. 
The failure mechanism imposes a displacement pattern on the 
beam, which reacts applying a critical combination of normal 
and shear forces on the boundary of the sliding body. These 
limiting supporting forces are calculated by assuming a Von 
Mises yield criterion for the micropile material. Then, they are 
introduced into the general minimization process associated 
with the upper bound formulation. Stability conditions are 
described in terms of dimensionless parameters and plotted in
ready to use design charts. In particular, a dimensionless 
Micropile Coefficient, which includes all the relevant design 
parameters of the umbrella, could be isolated and plotted in 
terms of undrained soil strength and tunnel geometry.  

2 UPPER BOUND SOLUTION INCLUDING 
SUBHORIZONTAL MICROPILES 

2.1 Collapse mechanism 

Consider the plane strain shallow circular tunnel of diameter D,
having a cover depth C, represented in Figure 1. The soil around 
the tunnel is characterized by its unit weight () and its 
undrained strength (cu). A vertical stress, S, is applied on the 
soil surface. In order to prevent a potential failure of the front, a 
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pressure T is applied on the tunnel face. In addition, a 
micropile supported on the already-built tunnel support is 
embedded in the soil. The micropile inclination with respect to a 
horizontal is defined by means of an angle .

Figure 1. Collapse mechanism for upper bound calculation. (a) 
Micropile crossing DE side (upper wedge); (b) Micropile crossing CD 
side (lower wedge).  

Figure 2. Micropile action on failure mechanism for upper bound 
calculation.

 Under these conditions an upper bound solution for tunnel 
face failure is analyzed by means of a kinematically admissible 
collapse mechanism, defined by means of five degrees of 
freedom (the five angles 1, 2, 3, 4 and 5 in Fig. 1). Two 
possible collapse mechanisms are considered regarding the 
relative position between the micropile and the resulting 
collapse mechanism. In Figure 1a the micropile crossed the 
upper wedge on the DE side. This condition can be expressed 
by the following restriction: 

1 2 3 43 2 0  . Otherwise, the 
micropile will cross the side CD (Fig. 1b).  

In the mechanism described, the micropile will react against 
the expected displacement imposed by the soil wedge. This 
effect will be included in the upper bound solution adding the 
work performed by the external forces transmitted by the 
micropile on the mobilized wedge. At point P (Fig. 2) he 
micropile action on the wedge will be characterized by a normal 
force N, a shear force Q and a bending moment, M. Notice that 
only N and Q will contribute directly to increase safety because 
the moment developed at point P will not produce any external 
stabilizing work.  

2.2 Upper bound theorem 

The upper bound theorem of plasticity is applied to the 
kinematically admissible failure mechanism shown in Figure 1. 
External work per unit of length performed by the external 
forces (weight, S, T and shear and tensile forces applied by 
the micropiles) due to a relative virtual rate of displacement is 
made equal to the internal dissipation of shearing work. The  
resulting equation is: 
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where s is the distance between two micropiles (assumed to be 
parallel) of the umbrella;  is the relative angle between the 
micropile and the upper sliding wedge (Fig. 1) defined as: 

1 2 3 4 55 2                                              (2a) 
when the micropile crosses DE; and  

1 2 3 4 53 2                                              (2b) 
when the micropile crosses CD. 

The parameter A in Eq. (1) is an auxiliary coefficient which 
also depends on the relative position between the micropile and 
the collapse mechanism: 

1   when the micropile crosses DE                             (3a) 
5

4

sin
sin
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
 when the micropile crosses CD                           (3b) 

Any combination of external forces that verifies Eq. (1) will 
be either greater than, or equal to, the forces causing collapse. 
Notice that the first terms (except the last one) of Equation (1) 
identify the upper bound expression in the absence of 
micropiles (Augarde et al. 2003).  

Forces exerted by the micropile on the critical wedge will 
be determined by an independent analysis in the following 
section. The micropile will be considered as a beam and 
subjected to the kinematic motion imposed by the assumed 
failure mechanism. 

2.3 Micropile behaviour. Limiting conditions 

The micropile is idealized as a beam subjected to a uniform 
imposed displacement  due to the moving wedge of the 
expected collapse mechanism. Figure 3 shows the micropile 
isolated from the surrounding soil. In order to simplify the 
calculation of the beam, the effective embedded length b
(distance between the crossing point P and a fixed, fully 
clamped, point X) of the micropile into the stationary soil will 
be assumed to be known. An estimation of the value of the 
clamping distance b may be obtained from the theory of piles 
embedded in an elastic half-space, subjected to a horizontal load 
and a moment at its head. This problem is described in Poulos 
and Davis (1980). According to this, b has been estimated in the 
range 0.2 to 0.1.  

The displacement defines the type of deformation and the 
stresses of the beam. Its actual value will be found through the 
assumption that the micropile section will be taken to limiting 
conditions. Yielding conditions of the steel of the micropile will 
be assumed to follow a Von Mises criterion. (The grouting 
contribution is very small and it will be disregarded). The Von 
Mises criterion in plane strain can be expressed as follows:  

2 23 e
2    (4)
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where  and  are the normal and shear stress acting on a fiber 
of a cross section of the micropile and e is the tensile strength 
of the steel.  and  will be expressed in terms of the normal 
force (N), shear force (Q) and bending moment (M).

The conditions leading to the maximum support provided by 
the micropile will be defined by those leading to the yielding of 
the most stressed fiber within the critically loaded steel cross 
section of the micropile. This section is point P in Figure 1. 

Forces N and Q and moment M at point P, due to an imposed 
displacement  can be calculated if the mechanical and 
geometrical parameters of the micropile are known: 
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where E is the steel elastic modulus, Ix is the moment of inertia 
with respect to the horizontal axis of the section and A is the 
cross-sectional area of the micropile (a steel tubular section has 
been choosen having a diameter d and thickness t). h=cos
and v=cos are the horizontal and vertical components of the 
imposed displacement,  expressed in terms of the angle 
(Eq.(2)).  

Under these conditions, normal and shear stresses due to the 
normal (N) and shear (Q) forces and moment (M) are calculated:  
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where z is the distance from the beam axis (x direction) to a 
particular point of the section and Sx is the static moment of the 
cross-sectional area above coordinate z.

Substituting N, Q and M from Equations (5) into Equations 
(6) and the resulting expressions for  and   into Equation (4), 
the Von Mises criterion can be written.   

(a)

(b) (c)
Figure 3. (a) Isolated micropile subjected to an imposed displacement;
(b) bending behavior of the micropile; (c) tensile behavior of the 
micropile.   

 A conservative assumption is now introduced in the 
calculation. The available strength provided by the micropile is 
calculated as the value associated with the state in which the 
section starts to yield at some fiber. Therefore, the stress 
provided by the micropile beyond this point, due to the yielding 
of the rest of the section, is not considered here.  

The shear stress  reaches a maximum in the center of the 
section. On contrary, the stress  due to N and M reaches a 
maximum at z = -RBending dominates the tensile stressing of 
the micropile for the particular problem we are considering due 
to the particular cross-section of the micropiles and the imposed 

loading mechanism.t turns out that the critical stress is located 
at the outer part of the cross section.  

Applying Von Mises’ criterion (Eq. 4) to the fiber 
characterized by z = -R the following expression for the 
displacement, , leading to the first fiber yielding in the 
micropile cross section at point P is derived: 
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                                (7) 

where f(d/b,) is a function of the ratio between the diameter of 
the micropile (d) and the equivalent length of the beam (b) and 
the relative orientation between the micropile and the upper 
sliding wedge of the failure mechanism () (Eq. (2)): 

     22 2, 6 cos sin 9sin cosf d b d b d b        (8)

Finally, when the value of  given in Equation (7) is 
substituted into equation (5b and c), the following shear and 
tensile forces applied by the micropile on the sliding 
mechanism, at point P, are found: 
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These expressions for N and Q are now introduced into Eq. 
(1) to find the external loads that leads to the defined failure 
mechanism. The resulting equation is: 
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 Notice that the fist term identifies the external forces 
without including the micropile. This term will be referred to as 
the “External Stress Coefficient”. The reinforcement is 
identified by the dimensionless parameter 

etd Dc s u
 which 

combines in a simple expression the mechanical properties of 
the tubular reinforcement (e, t and d), the undrained soil 
strength (cu) and the spacing between micropiles axis (s). This 
ratio will be named the “Micropile Coefficient”. 
 The most critical collapse mechanisms will be calculated 
optimizing the energy conservation equation with respect to the 
five angles describing the geometry.  

2.4 Upper bound solution for the External Stress 
Coefficient

The coefficient (s-)/cu has been isolated from Equation (10) 
and minimized with respect to the angles in order to find the 
smallest upper bound solution linked to the mechanism 
proposed. The upper bound solution obtained depends onD/cu,
on the Micropile Coefficient and on the cover ratio C/D.

The set of parameters defining the problem have been 
collected in Table 1. The table indicates also the range of values 
typically encountered in practice. Three values of the Micropile 
Coefficient (0, 20 and 50) have been selected to plot the 
minimized values of the External Stress Coefficient (with 
respect to the five angles) against the cover ratio C/D for 
different values of the strength ratio D/cu (Fig. 4). The adopted 
values of b, that defines the clamped length of the micropiles 
(Fig. 2), is five times the micropiles diameter (d).  
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To visualize better the effect of the micropile umbrella, the 
unreinforced case is plotted in Figure 4. Note that the 
reinforcement leads to a reduction of the required pressure 
applied to the tunnel face of even to make it unnecessary.  

3 CONCLUSION

Tunnel face instability is a risk associated with open front 
construction methods. This paper presents an analysis of the 
face stability of tunnels reinforced with an umbrella of 
micropiles. Non-dimensional solutions based on the upper 
bound classical theorem of plasticity have been developed. The 
procedure is based on two aspects: a) defining the limiting 
resisting conditions of the individual micropiles and b) 
including the micropile forces within the formulation of the 
upper bound theorem. Micropiles limiting resisting forces have 
been calculated starting from a basic yield criterion (Von Mises) 
for tubular steel reinforcements. Also included in the analysis 
was the stabilisation of the tunnel head by a pressure applied on 
the tunnel face.  

Figure 4. Upper bound solution of the External Stress Coefficient for the 
cases of  Micropile Coefficient equal to 0 (reinforced case), 20 and 50. 
d/b = 0.1.
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