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A Variational Approach for Analysis of Piles Subjected to Torsion 

Une approche variationnelle pour l'analyse des pieux soumis à torsion  
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ABSTRACT: A framework is developed using the variational principles of mechanics for analyzing torsionally loaded piles in elastic
soil. The total potential energy of the pile-soil system is minimized to obtain the differential equations governing the pile and soil
displacements.  Closed-form solutions are obtained for the angle of twist and torque in the pile as a function of depth. The analysis
explicitly takes into account the three-dimensional pile-soil interaction in multi-layered soil.  The results match well with the existing 
solutions and with those of equivalent finite element analyses. 

RÉSUMÉ : Un cadre conceptuel est élaboré en utilisant les principles variationnels de la mécanique pour l'analyse de pieux chargés
en torsion dans un sol élastique. L'énergie potentielle totale du système pieu-sol est minimisée pour obtenir les équations 
différentielles régissant le pieu et les déplacements du sol. Des solutions analytiques sont obtenues pour le couple et l'angle de torsion
dans le pieu en fonction de la profondeur. L'analyse prend en compte explicitement les interactions pieu-sol tridimensionnelles dans 
un système multi-couches. Les résultats correspondent bien avec les solutions existantes ainsi qu' à celles obtenues par des analyses
par éléments finis. 
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1 INTRODUCTION 

Piles loaded laterally are often subjected to torsion due to 
eccentricities of applied lateral loads. The existing analysis 
methods are mostly based on numerical techniques such as the 
three-dimensional finite difference, finite element, discrete 
element or boundary element methods (Poulos 1975, Dutt and 
O’Neill 1983, Chow 1985, Basile 2010) although some 
analytical methods also exist mostly based on the subgrade-
reaction approach (Randolph 1981, Hache and Valsangkar 
1988, Rajapakse 1988, Budkowska and Szymcza 1993, Guo and 
Randolph 1996, Guo et al. 2007).  

In this paper, a new analytical method is developed for 
torsionally loaded piles in multi-layered soil using the 
variational principles of mechanics.  Based on a continuum 
approach, the analysis assumes a rational displacement field in 
the soil surrounding the pile, and explicitly captures the three-
dimensional pile-soil interaction satisfying the compatibility 
and equilibrium between the pile and soil.  Closed form 
solutions for the angle of twist and torque in the pile shaft are 
obtained. The analysis produces accurate results if the 
equivalent soil elastic modulus is correctly estimated.  

2 ANALYSIS 

A pile of radius rp and length Lp embedded in a soil medium 
containing n layers is considered (Figure 1). The pile base rests 
in the nth layer and the pile head is at the level of the ground 
surface. The pile has a shear modulus of Gp and is subjected to a 
torque Ta at the head.  The soil layers extend to infinity in all 
horizontal directions and the bottom (nth) layer extends to 
infinity in the downward vertical direction.  The bottom of any 
layer i is at a depth of Hi from the ground surface; therefore, the 
thickness of the ith layer is Hi  Hi1 (note that H0 = 0).  The soil 

medium is assumed to be an elastic, isotropic continuum, 
homogeneous within each layer, characterized by Lame’s 
constants s and Gs.  There is no slippage or separation between 
the pile and the surrounding soil or between the soil layers.  For 
analysis, a polar (r- -z) coordinate system is assumed with its 
origin at the center of the pile head and z axis pointing 
downward.
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Figure 1. Torsionally loaded pile in multilayered soil. 
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Soil displacements ur and uz in the radial and vertical 
directions, generated by the applied torque Ta, can be assumed 
to be negligible (Figure 2).  The tangential displacement u in 
soil is nonzero and is assumed to be a product of separable 
variables as  

       p s p p su w z r r z r      (1) 
where wp is the displacement in the tangential direction at the 
pile-soil interface (i.e., it is the tangential displacement at the 
outer surface of the pile shaft), p is the angle of twist of the pile 
cross section (wp = rpp) which varies with depth z, and s is a 
dimensionless function that describes how the soil displacement 
varies with radial distance r from the center of the pile.  It is 
assumed that s = 1 at r  rp, which ensures no slip between pile 
and soil, and that s = 0 at r = , which ensures that the soil 
displacement decreases with increasing radial distance from the 
pile. 

Using the above soil displacement field, the strain-
displacement and stress-strain relationships are used to obtain 
the total potential energy of the pile-soil system as 
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 (2) 
where Jp (= rp

4/2) is the polar moment of inertia of the pile 
cross section. Minimizing the potential energy (i.e., setting  
= 0 where  is the variational operator) produces the equilibrium 
equations for the pile-soil system.  Using calculus of variations, 
the differential equations governing pile and soil displacements 
under equilibrium configuration are obtained. 

The differential equation governing the angle of twist of pile 
cross section p(z) within any layer i is obtained as 
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(5)
The boundary conditions of p(z) are given by 
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at the pile head (i.e., at z = z̃ = 0),  

( 1)pi p i   (17a)
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at the interface between any two layers (i.e., at z = Hi or z̃ = H͂i),
and
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at the pile base (i.e., at z = Lp or z̃ = 1). The dimensionless terms 
in the above equations are defined as: a a p pT T L G J

p ; z̃ = 
z/Lp and H͂i = Hi/Lp.  In the above equations, the nth (bottom) 
layer is split into two parts, with the part below the pile denoted 
by the subscript n + 1; therefore, Hn = Lp and Hn+1 = .  In 
equation [5], k̃n+1 is not defined at r = 0 as ln(0) is undefined; 
therefore, in obtaining the expression of k̃n+1, the lower limit of 
integration was changed from r = 0 to r =  where  is a small 
positive quantity (taken equal to 0.001 m in this study).   

The general solution of equation (3) is given by 
( ) ( )

1 1 2 2( ) i i
pi z C C     (9)

where  and  are integration constants of the ith layer, 
and 1 and 2 are individual solutions of equation (3), given by 
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The constants  and  are determined for each layer 
using the boundary conditions given in equations (6)-(8). 
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The governing differential equation (3) resembles that of a 
column (or rod) supported by a torsional spring foundation 
undergoing a twist. The parameter i accounts for the shear 
resistance of soil in the horizontal plane and i  represents the 
shear resistance of soil in the vertical plane.  The torque T(z) in 
the pile at any depth is given (in dimensionless form) by 
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 (12)

where a a p p pT T L G J . The torque T(z) includes the shear 
resistance offered by the horizontal planes of both the pile and 
surrounding soil. The governing differential equation (3) 
describes how the rate of change of this torque T with depth is 
balanced by the shear resistance in the vertical planes of the 
soil.  The boundary conditions at the interfaces of the adjacent 
layers ensure continuity of angle of twist and equilibrium of 
torque across these horizontal planes. The boundary condition at 
the pile head ensures that equilibrium between the torque T(z = 
0) and applied torque Ta is satisfied. The boundary condition at 
the pile base ensures equilibrium by equating the torque in the 
pile and soil at a horizontal plane infinitesimally above the base 
with the torque in soil at a horizontal plane infinitesimally 
below the base. 

The differential equation of s(r) is given by 
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where
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At the boundaries r = rp and r = , s is prescribed as s = 1 
and s = 0, respectively, which form the boundary conditions of 
equation (13). 

(14)

The solution of equation (13) subjected to the above 
boundary conditions is given by 
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where K1() is the first-order modified Bessel function of the 
second kind. The dimensionless parameter  determines the rate 
at which the displacement in the soil medium decreases with 
increasing radial distance from the pile. 

(15)

Equations (3) and (15) were solved simultaneously 
following an iterative algorithm because the parameters 
involved in these equations are interdependent.  At the same 
time, adjustments were made to the shear modulus by replacing 
Gs by an equivalent shear modulus * 0.5s sG  G .  This was 
necessary because the assumed soil displacement field 
described in equation (1) introduced artificial stiffness in the 
system and replacing Gs by Gs

* reduced this stiffness. 

3 RESULTS 

The accuracy of the proposed analysis is checked by comparing 
the results of the present analysis with those of previously 
obtained analyses and of three-dimensional (3D) finite element 
analyses performed as a part of this study.  In order to compare 
the results with those of the existing solutions, normalized angle 
of twist at the pile head I (also known as the torsional influence 
factor) and relative pile-soil stiffness t (Guo and Randolph 
1996) are defined for piles in homogeneous soil deposits (with a 
constant shear modulus Gs)
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Figure 2 shows the plots of I as a function of t for piles 
embedded in homogeneous soil, as obtained by Guo and 
Randolph (1996), Hache and Valsangkar (1978) and Poulos 
(1975) and as obtained from the present analysis.  It is evident 
that the pile responses obtained from the present analysis match 
those obtained by others quite well.  Figure 3 also shows that, 
for a given soil profile (in which Gs and Gp are constants) and a 
given applied torque Ta, I of a slender pile is less than that of a 
stubby pile.  Further, for a given pile geometry, I increases as 
Gp/Gs increases. 

In order to further check the accuracy of the present 
analysis, one example problem is solved and compared with the 
results of equivalent three-dimensional (3D) finite element 
analysis (performed using Abaqus). A four-layer deposit is 
considered in which a 30 m long pile with 1.0 m diameter is 
embedded.  The top three layers are located over 0-5 m, 5-10 m 
and 10-20 m below the ground surface. The fourth layer extends 
down from 20 m to great depth.  The elastic constants for the 
four layers are Gs1 = 8.6  103 kPa, Gs2 = 18.52  103 kPa, Gs3 = 
28.8  103 kPa and Gs4 = 40  103 kPa, respectively. This results 

in Gs1
* = 4.3  103 kPa, Gs2

* = 9.26  103 kPa, Gs3
* = 14.4  103

kPa and Gs4
* = 20.0  103 kPa.  The shear modulus of the pile 

Gp = 9.6  103 kPa and the applied torque at the head Ta = 100 
kN-m. Figure 3 shows the angle of twist in the piles as a 
function of depth for the two examples described above.  It is 
evident that the match between the results of the present 
analysis and those of the finite element analyses is quite good. 
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Figure 2. I versus t for piles in homogeneous soil deposits. 

0 0.0002 0.0004 0.0006

Angle of Twist, p (radian)

30

20

10

0

D
ep

th
, z

(m
)

Present Analysis
3D Finite Element

Pile Diameter = 1.0 m
Pile Length = 30 m

Figure 3. Angle of twist versus depth of a 10 m long pile in a 2-layer 
soil deposit. 

The effect of soil layering is studied for piles in two-layer 
profiles with slenderness ratio Lp/rp = 20 and 100 and for Gp/Gs1
= 1000 (Gs1 is the shear modulus of the top layer).  I is 
calculated using the above parameters for different values of 
H1/Lp (H1 is the thickness of the top layer) and Gs2/Gs1 (Gs2 is 
the shear modulus of the bottom layer).  The values of I thus
obtained are normalized with respect to I,homogeneous calculated 
for piles in homogeneous soil profiles with Gs = Gs1.  Figure 4 
shows the normalized parameter I/I,homogeneous as a function of 
H1/Lp.  Note that H1/Lp = 0 implies that the pile is embedded in 
a homogeneous soil with the shear modulus equal to Gs2. H1/Lp
= 1 implies that the entire pile shaft lies within the top layer and 
the pile base rests on top of the bottom layer.  Also note that 
I,homogeneous corresponds to the case where H1/Lp = .  It is 
evident from Figure 4 that, for long, slender piles with Lp/rp = 
100, the presence of the second layer affects pile head response 
only if the bottom layer starts within the top 25% of the pile 
shaft.  For short, stubby piles with Lp/rp = 20, the head response 
is affected even if the bottom layer starts close to the pile base. 
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Randolph, M. F. (1981). Piles subjected to torsion. Journal of 
Geotechnical Engineering, 107(8), 1095–1111. 
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Figure 4. Angle of twist versus depth of a 10 m long pile in a 2-layer 
soil deposit. 

The effect of soil layering is further studied with three-layer 
profiles for three different cases.  For all the cases, the three 
layers divide the pile shaft into three equal parts of length Lp/3 
and the pile base rests within the third layer, which extends 
down to great depth (Figure 5). Moreover, the shear moduli Gs1,
Gs2 and Gs3 of the top, middle and bottom layers are so chosen 
that (Gs1 + Gs2 + Gs3)/3 = Gs for all the cases.  Case I represents 
a soil profile in which the soil stiffness increases with depth 
the top, middle and bottom (third) layer have a shear moduli 
equal to 0.23Gs, 0.69Gs and 2.08Gs, respectively.  Note that, for 
this case, Gs3 = 3Gs2 and Gs2 = 3Gs1.  For Case II, Gs1 = 0.69Gs,
Gs2 = 0.23Gs and Gs3 = 2.08Gs.  For case III, the soil stiffness 
decreases as depth increases with Gs1 = 2.08Gs, Gs2 = 0.69Gs
and Gs3 = 0.23Gs.  Figure 7 shows the I versus t plots for these 
cases.  The parameter t is calculated using the average shear 
modulus Gs.  Also plotted i

Figure 5. Response of pi
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