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ABSTRACT: Structural optimization methods are used for a wide range of engineering problems. In geotechnical engineering
however, only limited experience exists with these methods. The possibilities and difficulties in applying such techniques to
geotechnical problems are discussed in this paper and the adaption of the commonly known SIMP-method (Solid Isotropic Material
with Penelization) to geotechnical problems is introduced. An application example is used to demonstrate the potential of structural
optimization in geotechnical engineering.

RESUME : Des méthodes de I’optimisation de la structure sont employés dans beaucoup de disciplines d’ingénieurs. Mais il y a
quand-méme peu d’expériences dans le domaine de la géotechnique. Les possibilités et les difficultés de ’application de ces
procédures d’optimisation dans la géotechnique sont discutées dans cet article. L’application de la méthode SIMP est présenté. Un

exemple est présenté pout montrer le potentiel de 1’application de cette méthode.
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1 INTRODUCTION

Structural optimization methods are used for a wide range of
engineering problems, for instance in aviation and automotive
engineering. In geotechnical engineering however, only limited
experience exists with such methods. The possibilities and
difficulties in applying these techniques to geotechnical
problems are discussed in this paper and the adaption of the
commonly known SIMP-method to geotechnical problems is
introduced.

1.1 Structural Optimization

Structural Optimization can be classified in three categories.
The first category is called topology optimization and describes
the main geometry of a design. Topology is a mathematical
field used to describe geometrical structures. A geotechnical
example of different topologies to stabilize a slope is shown in
Figure 1.

Figure 1a) shows the design problem. Different constructions
can be used to solve this task, for example a gravity wall
(Figure 1b), a single anchored wall (Figure 1c) or a grouted
anchored wall (Figure 1d). These three constructions differ in
their topology. Some topology optimization algorithms can be
found in Bendsee (1995) or Allaire (2005).
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Once a topology is chosen, the shape of the topology can be
optimized with regard to the design problem. Concerning the
design problem in Figure 1, the topology in Figure 1d is chosen.
Figure 2 shows different possibilities to optimize the shape of
the topology in Figure 1d during the category shape
optimization, for example the variation of the anchor positions
(b), of the anhor inclination (c) or the anchor length (d). The
variations in Figure 2 b)-d) can be varied regarding an
optimization task, for instance the minimization of the bending
of the wall or minimization of the installation costs. The
application of shape optimization algorithms in geotechnical
application has been shown in Kinzler (2007) and Grabe et al.
(2010, 2011).

The third category is the dimension optimization of each
construction part. Within this category every cross section and
dimension is determined. Neither the topology nor the shape can
be changed by the dimension optimization. The dimension
optimization is the most widely applied category of structural
optimization in geotechnical engineering. The shape
optimization of Figure 2 results in the shape shown in Figure 3.
For this example, possible parameters for the dimension
optimization are given in Figure 3.
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Figure 1. Different topologies for a design problem a): b) gravity wall, ¢) single anchored wall, d) grouted anchored wall
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Figure 2. Shape optimization: a) main topology, b) variation 1: anchor position, ¢) variation 2: anchor inclination, d) variation 3: anchor length
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Figure 3. Dimension optimization

2 NUMERICAL OPTIMIZATION ALGORITHM

An iterative algorithm is used to solve the optimization problem
numerically. First a topology is created and second its load-
displacement behavior is determined using a finite-elemente
analysis. In the next step, the results of the finite-element
analysis are interpreted and transmitted to a topology
optimization algorithm, which creates a new improved
topology. Afterwards step two is performed again.

The SIMP-Method (Solid Isotropic Material with
Penelization) after Sigmund (2001) is used as topology
optimization algorithm. The algorithm is based on the idea, that
the material of the optimized structure already exists in the
design domain €, but is not optimally distributed. Therefore,
the material is equally distributed in the design domain Q at the
beginning of the optimization process. The material distribution
changes during the optimization process and the material
compacts in areas where it is needed to achieve the optimization
task.

The design domain € is descretized with finite elements.
The material parameters are specified individually for each
element depending on the material distribution. The virtual
density p at a point @ has to be between 0 and 1, see Equation 1.

@ 0 — no material
a)=
P 1 = material (D

Regarding a geotechnical application, for example a
foundation made of concrete, a finite-element with p(a) =0 is a
soil element and with p(a) = 1 is a concrete element.

Using the SIMP-Method, the objective function is the
minimization of the compliance of the structure in the design
domain €. Thus, the stiffness of the structure is maximized. The
compliance of the structure can be expressed using the internal
energy of the system. The internal energy ¢ of an elastic
material is defined by Equation 2.

C(X)ZUTKU )

In Equation 2 U is the global deformation tensor, K the
global stiffness matrix and x the tensor of design parameters.
The virtual density p(a) matches the design parameters of x; of
the tensor x at point a.
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The minimization of the compliance is restricted by two
constraints. The first constraint ensures that the observed system
is in equilibrium an every step of the optimization process.
Using the finite-element method, this constraint is ensured by
Equation 3. F is the global tensor of the external forces.

KU=F (3)

The second constraint ensures that the volume of the
material distributed in the design domain remains constant

during the optimization process, see Equation 4. Vs is the
volume of the structure.
I 1dQ =V @)
Qmat

Additionally, the design parameters x; are limited by an
upper and an lower bound, such that the optimized material
parameters lie within to the physically possible range.

The optimization task for minimal compliance design can be
written using Equation 5. U, is the element deformation tensor,
K, the element stiffness matrix, p, the element virtual density, &
the volume fraction, Vg the structure volume and V), is the
volume of the design domain. The values of the material
distribution are limited by x,,;, to avoid singularities during the
finite-element analysis. Using the algorithm for geotechnical
application, this limit is not necessary because the stiffness of
an element belongs to the soils stiffness at x; = 0 and cannot
tend to zero.

. N
min:  c(x) =UTKU:Z (pe)pUeTKeUe
subject to: KU=F e
Vs =Vy -5

0<xmin£xsl

)

The penalty p controls the material change-over to ensure
complete material change for example from soil to concrete, see
Figure 4.

The improved topology in every iteration step is determined
using the method of optimal criteria, see Equation 6 (Bendsee
1995). A positive move-limit m and a numerical damping
coefficient 17 = 0.50 are introduced, see Bendsee (1995). The
move-limit m limits the change of the topology in each iteration
step. The sensitivity of the objective function is expressed in
Equation 7. Using the Lagrangian multiplier 4, B, is defined in
Equation 8.
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Figure 4: Change-over of the Young's modulus £ of two different
materials depending on different values of the penalty term p

3 APPLICATION

1.2 Numerical model

The presented topology optimization algorithm is applied to a
vertically loaded strip footing foundation. The topology
underneath the foundation is to be optimized. The inital width
of the foundation is 2m and the height is 1 m. The load-
settlement behavior is simulated in a 2D finite-element analysis.
The discretization of the model is shown in Figure 5.

strip foundation . .
B—8m =1 l»P design domain
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Figure 5. Discretization of the FE-model of a strip foundation with a
width of 2 m and a height of 1 m, vertically loaded with 500 kN at the
loading point P

The foundation is vertically loaded with 500 kN. The soil
and the improved material underneath the strip foundation is
modeled using the hypoplastic constitutive model after von
Wolffersdorff (1996) with the extension of intergranular strain
after Niemunis and Herle (1997). Detailed information can be
found in Pucker and Grabe (2011).
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1.3 Optimization

Three optimizations are performed at different material
volumes. The material volume is 2%, 5% and 10% of the design
domain. The design domain is 20 m of width and 14 m of
height, see Figure 5.

1.4 Results

In Figure 7 the optimized topologies with 2%, 5% and 10%
material volume are illustrated. Regarding the 2% material
volume, mainly the aera at the foundation edges are compacted.
Since the foundation can be considered to be rigid, the
optimization results can be explained with the theory of a rigid
foundation on an elastic half-space, according to which high
stresses will occur at the edges of the foundation. The
optimization algorithm compacts the material mainly in these
areas.

Figure 6 shows the displacement of the soil underneath the
foundation with the unoptimized (Figure 6 a) und the optimized
(Figure 6 b) structure with a volume of 5%. The settlements can
be reduced up to 50%.
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Figure 6. Vertical displacement before (left) and after (right)
the topology optimization with 5% material volume
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Figure 7. Optimized foundations with a) 2% material volume, b) 5% material volume, ¢) 10% material volume

The influence of the material volume on the improvement is
shown in Figure 8. Figure 8 top shows the material volume over
the vertical load P at different settlements. The applicable load
at a settlement restriction about 1 cm cannot be significantly
improved using more than 2% material volume. Regarding
higher settlement restrictions, the increase of the material
volume also increases the applicable load P.

The same results can be obtained from the load settlement
curves of the improved foundations in Figure 8 bottom. The
main improvement is reached with a material volume about 2%.
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Figure 8. top: load P over material volume at different settlement
restrictions; bottom: load-settlement curves of the optimized foundation
topologies

1.5  Practical realization

The practical realization of the optimized topologies can be
quite difficult. The optimized topologies of the presented
example can be realized using the jet grouting method. This
method allows the realization of every possible topology
restricted by the minimum diameter of a jet grouting body.

Another possibility to realize such topologies is the
interpretation of the topologies and the conversion of the
topology into standard geotechnical construction parts. The
realization of the topology with 2% material can be done using
a classical strip foundation topology in combination with micro
piles, see Figure 9.

l P

strip footing

b

micro piles

Figure 9. Possible practical realization of the topology with 2% material
volume

2 CONCLUSION

The application of topology optimization in geotechnical
engineering was presented. The applied SIMP-Method is
suitable for geotechnical problems. In the presented example,
the settlements of a strip foundation could be reduced up 66%.

Topology optimization in geotechnical engineering has a
great potential and can lead to innovative and efficient designs.
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